1,994 research outputs found

    Recurrent herpes zoster in the Shingles Prevention Study: Are second episodes caused by the same varicella-zoster virus strain?

    Get PDF
    Herpes zoster (HZ) is caused by reactivation of varicella zoster virus (VZV) that established latency in sensory and autonomic neurons during primary infection. In the Shingles Prevention Study (SPS), a large efficacy trial of live attenuated Oka/Merck zoster vaccine (ZVL), PCR-confirmed second episodes of HZ occurred in two of 660 placebo and one of 321 ZVL recipients with documented HZ during a mean follow-up of 3.13 years. An additional two ZVL recipients experienced a second episode of HZ in the Long-Term Persistence Substudy. All episodes of HZ were caused by wild-type VZV. The first and second episodes of HZ occurred in different dermatomes in each of these five participants, with contralateral recurrences in two. Time between first and second episodes ranged from 12 to 28 months. One of the five participants, who was immunocompetent on study enrollment, was immunocompromised at the onset of his first and second episodes of HZ. VZV DNA isolated from rash lesions from the first and second episodes of HZ was used to sequence the full-length VZV genomes. For the unique-sequence regions of the VZV genome, we employed target enrichment of VZV DNA, followed by deep sequencing. For the reiteration regions, we used PCR amplification and Sanger sequencing. Our analysis and comparison of the VZV genomes from the first and second episodes of HZ in each of the five participants indicate that both episodes were caused by the same VZV strain. This is consistent with the extraordinary stability of VZV during the replication phase of varicella and the subsequent establishment of latency in sensory ganglia throughout the body. Our observations also indicate that VZV is stable during the persistence of latency and the subsequent reactivation and replication that results in HZ

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998

    No full text
    Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods. Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments

    Epidemic Enhancement in Partially Immune Populations

    Get PDF
    We observe that a pathogen introduce/pmcdata/journal/plosone/2-2007/1/ingest/pmcmod/sgml/pone.0000165.xmld into a population containing individuals with acquired immunity can result in an epidemic longer in duration and/or larger in size than if the pathogen were introduced into a naive population. We call this phenomenon “epidemic enhancement,” and use simple dynamical models to show that it is a realistic scenario within the parameter ranges of many common infectious diseases. This finding implies that repeated pathogen introduction or intermediate levels of vaccine coverage can lead to pathogen persistence in populations where extinction would otherwise be expected

    Plasma neurofilament light is a predictor of neurological outcome 12 h after cardiac arrest

    Get PDF
    Background: Previous studies have reported high prognostic accuracy of circulating neurofilament light (NfL) at 24–72 h after out-of-hospital cardiac arrest (OHCA), but performance at earlier time points and after in-hospital cardiac arrest (IHCA) is less investigated. We aimed to assess plasma NfL during the first 48 h after OHCA and IHCA to predict long-term outcomes. Methods: Observational multicentre cohort study in adults admitted to intensive care after cardiac arrest. NfL was retrospectively analysed in plasma collected on admission to intensive care, 12 and 48 h after cardiac arrest. The outcome was assessed at two to six months using the Cerebral Performance Category (CPC) scale, where CPC 1–2 was considered a good outcome and CPC 3–5 a poor outcome. Predictive performance was measured with the area under the receiver operating characteristic curve (AUROC). Results: Of 428 patients, 328 (77%) suffered OHCA and 100 (23%) IHCA. Poor outcome was found in 68% of OHCA and 55% of IHCA patients. The overall prognostic performance of NfL was excellent at 12 and 48 h after OHCA, with AUROCs of 0.93 and 0.97, respectively. The predictive ability was lower after IHCA than OHCA at 12 and 48 h, with AUROCs of 0.81 and 0.86 (p ≤ 0.03). AUROCs on admission were 0.77 and 0.67 after OHCA and IHCA, respectively. At 12 and 48 h after OHCA, high NfL levels predicted poor outcome at 95% specificity with 70 and 89% sensitivity, while low NfL levels predicted good outcome at 95% sensitivity with 71 and 74% specificity and negative predictive values of 86 and 88%. Conclusions: The prognostic accuracy of NfL for predicting good and poor outcomes is excellent as early as 12 h after OHCA. NfL is less reliable for the prediction of outcome after IHCA

    Frequency-dependent selection in vaccine-associated pneumococcal population dynamics

    Get PDF
    Many bacterial species are composed of multiple lineages distinguished by extensive variation in gene content. These often cocirculate in the same habitat, but the evolutionary and ecological processes that shape these complex populations are poorly understood. Addressing these questions is particularly important for Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen, because the changes in population structure associated with the recent introduction of partial-coverage vaccines have substantially reduced pneumococcal disease. Here we show that pneumococcal lineages from multiple populations each have a distinct combination of intermediate-frequency genes. Functional analysis suggested that these loci may be subject to negative frequency-dependent selection (NFDS) through interactions with other bacteria, hosts or mobile elements. Correspondingly, these genes had similar frequencies in four populations with dissimilar lineage compositions. These frequencies were maintained following substantial alterations in lineage prevalences once vaccination programmes began. Fitting a multilocus NFDS model of post-vaccine population dynamics to three genomic datasets using Approximate Bayesian Computation generated reproducible estimates of the influence of NFDS on pneumococcal evolution, the strength of which varied between loci. Simulations replicated the stable frequency of lineages unperturbed by vaccination, patterns of serotype switching and clonal replacement. This framework highlights how bacterial ecology affects the impact of clinical interventions.Accessory loci are shown to have similar frequencies in diverse Streptococcus pneumoniae populations, suggesting negative frequency-dependent selection drives post-vaccination population restructuring

    Characteristic Energy of the Coulomb Interactions and the Pileup of States

    Get PDF
    Tunneling data on La1.28Sr1.72Mn2O7\mathrm{La_{1.28}Sr_{1.72}Mn_2O_7} crystals confirm Coulomb interaction effects through the E\sqrt{\mathrm{E}} dependence of the density of states. Importantly, the data and analysis at high energy, E, show a pileup of states: most of the states removed from near the Fermi level are found between ~40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis.Comment: 4 pages, 4 figures, submitted to PR

    Assessing the psychometric and ecometric properties of neighborhood scales using adolescent survey data from urban and rural Scotland

    Get PDF
    This work was supported by NHS Health Scotland and the University of St Andrews.Background:  Despite the well-established need for specific measurement instruments to examine the relationship between neighborhood conditions and adolescent well-being outcomes, few studies have developed scales to measure features of the neighborhoods in which adolescents reside. Moreover, measures of neighborhood features may be operationalised differently by adolescents living in different levels of urban/rurality. This has not been addressed in previous studies. The objectives of this study were to: 1) establish instruments to measure adolescent neighborhood features at both the individual and neighborhood level, 2) assess their psychometric and ecometric properties, 3) test for invariance by urban/rurality, and 4) generate neighborhood level scores for use in further analysis. Methods:  Data were from the Scottish 2010 Health Behaviour in School-aged Children Survey, which included an over-sample of rural adolescents. The survey responses of interest came from questions designed to capture different facets of the local area in which each respondent resided. Intermediate data zones were used as proxies for neighborhoods. Internal consistency was evaluated by Cronbach’s alpha. Invariance was examined using confirmatory factor analysis. Multilevel models were used to estimate ecometric properties and generate neighborhood scores. Results:  Two constructs labeled neighborhood social cohesion and neighborhood disorder were identified. Adjustment was made to the originally specified model to improve model fit and measures of invariance. At the individual level, reliability was .760 for social cohesion and .765 for disorder, and between .524 and .571 for both constructs at the neighborhood level. Individuals in rural areas experienced greater neighborhood social cohesion and lower levels of neighborhood disorder compared with those in urban areas. Conclusions:  The scales are appropriate for measuring neighborhood characteristics experienced by adolescents across urban and rural Scotland, and can be used in future studies of neighborhoods and health. However, trade-offs between neighborhood sample size and reliability must be considered.Publisher PDFPeer reviewe

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit
    corecore