1,279 research outputs found

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Accessibility-based reranking in multimedia search engines

    Get PDF
    Traditional multimedia search engines retrieve results based mostly on the query submitted by the user, or using a log of previous searches to provide personalized results, while not considering the accessibility of the results for users with vision or other types of impairments. In this paper, a novel approach is presented which incorporates the accessibility of images for users with various vision impairments, such as color blindness, cataract and glaucoma, in order to rerank the results of an image search engine. The accessibility of individual images is measured through the use of vision simulation filters. Multi-objective optimization techniques utilizing the image accessibility scores are used to handle users with multiple vision impairments, while the impairment profile of a specific user is used to select one from the Pareto-optimal solutions. The proposed approach has been tested with two image datasets, using both simulated and real impaired users, and the results verify its applicability. Although the proposed method has been used for vision accessibility-based reranking, it can also be extended for other types of personalization context

    Flavor Structure in F-theory Compactifications

    Full text link
    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of right-handed neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N_gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E_6 type point and one D_6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N_gen x N_gen CKM matrix is predicted to have only N_gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. We also obtained a precise description of zero mode wavefunctions near the E_6 type singularity points, where the up-type Yukawa couplings are generated.Comment: 148 page

    Identification of functional rare variants in genome-wide association studies using stability selection based on random collapsing

    Get PDF
    Genome-wide association studies are a powerful approach used to identify common variants for complex disease. However, the traditional genome-wide association methods may not be optimal when they are applied to rare variants because of the rare variants’ low frequencies and weak signals. To alleviate the difficulty, investigators have proposed many methods that collapse rare variants. In this paper, we propose a novel ranking method, which we call stability selection based on random collapsing, to rank the candidate rare variants. We use the simulated mini-exome data sets of unrelated individuals from Genetic Analysis Workshop 17 for the analysis. The numerical results suggest that the selection based on a random collapsing method is promising for identifying functional rare variants in genome-wide association studies. Further research to examine the error control property of the proposed method is underway

    Automated Analysis of Risk Factors for Postictal Generalized EEG Suppression

    Get PDF
    Rationale: Currently, there is some ambiguity over the role of postictal generalized electro-encephalographic suppression (PGES) as a biomarker in sudden unexpected death in epilepsy (SUDEP). Visual analysis of PGES, known to be subjective, may account for this. In this study, we set out to perform an analysis of PGES presence and duration using a validated signal processing tool, specifically to examine the association between PGES and seizure features previously reported to be associated with visually analyzed PGES. Methods: This is a prospective, multicenter epilepsy monitoring study of autonomic and breathing biomarkers of SUDEP in adult patients with intractable epilepsy. We studied videoelectroencephalogram (vEEG) recordings of generalized convulsive seizures (GCS) in a cohort of patients in whom respiratory and vEEG recording were carried out during the evaluation in the epilepsy monitoring unit. A validated automated EEG suppression detection tool was used to determine presence and duration of PGES. Results: We studied 148 GCS in 87 patients. PGES occurred in 106/148 (71.6%) seizures in 70/87 (80.5%) of patients. PGES mean duration was 38.7 ± 23.7 (37; 1–169) seconds. Presence of tonic phase during GCS, including decerebration, decortication and hemi-decerebration, were 8.29 (CI 2.6–26.39, p = 0.0003), 7.17 (CI 1.29–39.76, p = 0.02), and 4.77 (CI 1.25–18.20, p = 0.02) times more likely to have PGES, respectively. In addition, presence of decerebration (p = 0.004) and decortication (p = 0.02), older age (p = 0.009), and hypoxemia duration (p = 0.03) were associated with longer PGES durations. Conclusions: In this study, we confirmed observations made with visual analysis, that presence of tonic phase during GCS, longer hypoxemia, and older age are reliably associated with PGES. We found that of the different types of tonic phase posturing, decerebration has the strongest association with PGES, followed by decortication, followed by hemi-decerebration. This suggests that these factors are likely indicative of seizure severity and may or may not be associated with SUDEP. An automated signal processing tool enables objective metrics, and may resolve apparent ambiguities in the role of PGES in SUDEP and seizure severity studies

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium
    corecore