35 research outputs found

    Male commuters in north and south England: risk factors for the presence of faecal bacteria on hands

    Get PDF
    BACKGROUND: A previous study found that the prevalence of contamination with bacteria of faecal-origin on the hands of men differed across UK cities, with a general trend of increased contamination in northern cities. The aim of this study was to (1) confirm the north-south trend (2) identify causes for the trend. METHODS: Hand swabs from commuters (n = 308) at train stations in 4 cities were tested for the presence of faecal bacteria. RESULTS: The prevalence of hand contamination with faecal bacteria was again higher in cities in the north compared to the south (5% in London, 4% in Birmingham, 10% in Liverpool and 19% in Newcastle). Contamination risk decreased with age and better personal hygiene (self-reported). Soil contact and shaking hands increased contamination with faecal bacteria. However, in multivariable analysis, none of these factors fully explained the variation in contamination across cities. CONCLUSION: The study confirmed the north-south differences in faecal contamination of hands without finding a clear cause for the trend. Faecal contamination of hands was associated with personal hygiene indicators suggesting that microbiological testing may contribute to evaluating hygiene promotion campaigns

    Biogeochemistry: Early phosphorus redigested

    Get PDF
    Atmospheric oxygen was maintained at low levels throughout huge swathes of Earth's early history. Estimates of phosphorus availability through time suggest that scavenging from anoxic, iron-rich oceans stabilized this low-oxygen world

    Luminescent properties of Bi-doped polycrystalline KAlCl4

    Full text link
    We observed an intensive near-infrared luminescence in Bi-doped KAlCl4 polycrystalline material. Luminescence dependence on the excitation wavelength and temperature of the sample was studied. Our experimental results allow asserting that the luminescence peaked near 1 um belongs solely to Bi+ ion which isomorphically substitutes potassium in the crystal. It was also demonstrated that Bi+ luminescence features strongly depend on the local ion surroundings

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet

    Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era

    Get PDF
    The Neoproterozoic era (about 1,000 to 542 million years ago) was a time of turbulent environmental change. Large fluctuations in the carbon cycle were associated with at least two severe-possible Snowball Earth-glaciations. There were also massive changes in the redox state of the oceans, culminating in the oxygenation of much of the deep oceans. Amid this environmental change, increasingly complex life forms evolved. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. We argue instead that the evolution of increasingly complex eukaryotes, including the first animals, could have oxygenated the ocean without requiring an increase in atmospheric oxygen. We propose that large eukaryotic particles sank quickly through the water column and reduced the consumption of oxygen in the surface waters. Combined with the advent of benthic filter feeding, this shifted oxygen demand away from the surface to greater depths and into sediments, allowing oxygen to reach deeper waters. The decline in bottom-water anoxia would hinder the release of phosphorus from sediments, potentially triggering a potent positive feedback: phosphorus removal from the ocean reduced global productivity and ocean-wide oxygen demand, resulting in oxygenation of the deep ocean. That, in turn, would have further reinforced eukaryote evolution, phosphorus removal and ocean oxygenation
    corecore