490 research outputs found

    Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection

    Get PDF
    Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex’s entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that upregulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype

    Meningococcal genetic variation mechanisms viewed through comparative analysis of Serogroup C strain FAM18

    Get PDF
    Copyright @ 2007 Public Library of ScienceThe bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus.This work was supported by the Wellcome Trust through the Beowulf Genomics Initiative

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Scalable Transcriptome Preparation for Massive Parallel Sequencing

    Get PDF
    Background: The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. Methodology: In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was compared to the standard manual sample preparation. Conclusion/Significance: The automated procedure was used to generate libraries for gene expression profiling on the Illumina HiSeq 2000 platform with the capacity of 12 samples per preparation with a significantly improved throughput compared to the standard manual preparation. The data analysis shows consistent gene expression profiles in terms of sensitivity and quantification of gene expression between the two library preparation methods

    International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact

    Get PDF
    Background: Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease, caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background. / Methods: Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%), Asia (25%), Europe (19%), North America (12%), and South America (5%). These 20,027 pneumococcal genomes were clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage. / Findings: The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and including, the first year of pneumococcal conjugate vaccine introduction. Penicillin and multidrug resistance were higher (p < .05) in a subset dominant-GPSCs (14/35, 9/35 respectively), and resistance to an increasing number of antibiotic classes was associated with increased recombination (R2 = 0.27 p < .0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p < .05) of its antibiogram (mean misclassification error 0.28, SD ± 0.13). We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds expressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed. / Interpretation: We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumococcal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance, and/or serotype-independent invasiveness

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    Background: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. Methods: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. Results: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. Conclusion: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success

    Cardiovascular Risk Associated with Interactions among Polymorphisms in Genes from the Renin-Angiotensin, Bradykinin, and Fibrinolytic Systems

    Get PDF
    Vascular fibrinolytic balance is maintained primarily by interplay of tissue plasminogen activator (t-PA) and plasminogen activator inhibitor type 1 (PAI-1). Previous research has shown that polymorphisms in genes from the renin-angiotensin (RA), bradykinin, and fibrinolytic systems affect plasma concentrations of both t-PA and PAI-1 through a set of gene-gene interactions. In the present study, we extend this finding by exploring the effects of polymorphisms in genes from these systems on incident cardiovascular disease, explicitly examining two-way interactions in a large population-based study

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant
    corecore