670 research outputs found

    A chromatic transient visual evoked potential based encoding/decoding approach for brain-computer interface

    Get PDF
    This paper presents a new encoding/decoding approach to brain-computer interface (BCI) based on chromatic transient visual evoked potential (CTVEP). The proposed CTVEP-based encoding/decoding approach is designed to provide a safer and more comfortable stimulation method than the conventional VEP-based stimulation methods for BCI without loss of efficiency. For this purpose, low-frequency isoluminant chromatic stimuli are time-encoded to serve as different input commands for BCI control, and the superior comfortableness of the proposed stimulation method is validated by a survey. A combination of diversified signal processing techniques are further employed to decode the information from CTVEP. Based on experimental results, a properly designed configuration of the CTVEP-based stimulation method and a tailored signal processing framework are developed. It is demonstrated that high performance (at information transfer rate: 58.0 bits/min, accuracy: 94.9%, false alarm rate: 1.3%) for BCI can be achieved by means of the CTVEP-based encoding/decoding approach. It turns out that to achieve such good performance, only simple signal processing algorithms with very low computational complexity are required, which makes the method suitable for the development of a practical BCI system. A preliminary prototype of such a system has been implemented with demonstrated applicability. © 2011 IEEE.published_or_final_versio

    Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

    Full text link
    We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nordstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells

    Ultrasonic reflection coefficient and surface roughness index of OA articular cartilage: relation to pathological assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis of Osteoarthritis (OA) is essential for preventing further cartilage destruction and decreasing severe complications. The aims of this study are to explore the relationship between OA pathological grades and quantitative acoustic parameters and to provide more objective criteria for ultrasonic microscopic evaluation of the OA cartilage.</p> <p>Methods</p> <p>Articular cartilage samples were prepared from rabbit knees and scanned using ultrasound biomicroscopy (UBM). Three quantitative parameters, including the roughness index of the cartilage surface (URI), the reflection coefficients from the cartilage surface (R) and from the cartilage-bone interface (R<sub>bone</sub>) were extracted. The osteoarthritis grades of these cartilage samples were qualitatively assessed by histology according to the grading standards of International Osteoarthritis Institute (OARSI). The relationship between these quantitative parameters and the osteoarthritis grades was explored.</p> <p>Results</p> <p>The results showed that URI increased with the OA grade. URI of the normal cartilage samples was significantly lower than the one of the OA cartilage samples. There was no significant difference in URI between the grade 1 cartilage samples and the grade 2 cartilage samples. The reflection coefficient of the cartilage surface reduced significantly with the development of OA (p < 0.05), while the reflection coefficient of the cartilage-bone interface increased with the increase of grade.</p> <p>Conclusion</p> <p>High frequency ultrasound measurements can reflect the changes in the surface roughness index and the ultrasound reflection coefficients of the cartilage samples with different OA grades. This study may provide useful information for the quantitative ultrasonic diagnosis of early OA.</p

    Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    Get PDF
    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry

    HIF1 alpha isoforms in benign and malignant prostate tissue and their correlation to neuroendocrine differentiation

    Get PDF
    Background: Neuroendocrine (NE) differentiation in prostate cancer has been correlated with a poor prognosis and hormone refractory disease. In a previous report, we demonstrated the presence of immunoreactive cytoplasmic hypoxia inducible factor 1 alpha (HIF1 alpha), in both benign and malignant NE prostate cells. HIF1 alpha and HIF1 beta are two subunits of HIF1, a transcription factor important for angiogenesis. The aim of this study was to elucidate whether the cytoplasmic stabilization of HIF1 alpha in androgen independent NE differentiated prostate cancer is due to the presence of certain HIF1 alpha isoforms.Methods: We studied the HIF1 alpha isoforms present in 8 cases of benign prostate hyperplasia (BPH) and 43 cases of prostate cancer with and without NE differentiation using RT-PCR, sequencing analysis, immunohistochemistry and in situ hybridization.Results: We identified multiple isoforms in both benign and malignant prostate tissues. One of these isoforms, HIF1 alpha 1.2, which was previously reported to be testis specific, was found in 86% of NE-differentiated prostate tumors, 92% of HIF1 alpha immunoreactive prostate tumors and 100% of cases of benign prostate hyperplasia. Immunohistochemistry and in situ hybridization results showed that this isoform corresponds to the cytoplasmic HIF1 alpha present in androgen-independent NE cells of benign and malignant prostate tissue and co-localizes with immunoreactive cytoplasmic HIF1 beta.Conclusion: Our results indicate that the cytoplasmic stabilization of HIF1 alpha in NE-differentiated cells in benign and malignant prostate tissue is due to presence of an HIF1 alpha isoform, HIF1 alpha 1.2. Co-localization of this isoform with HIF1 beta indicates that the HIF1 alpha 1.2 isoform might sequester HIF1 beta in the cytoplasm

    Double Diffraction Dissociation at the Fermilab Tevatron Collider

    Get PDF
    We present results from a measurement of double diffraction dissociation in pˉp\bar pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Δη0>3\Delta\eta^0>3 (overlapping η=0\eta=0) is found to be 4.43±0.02(stat)±1.18(syst)mb4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb} [3.42±0.01(stat)±1.09(syst)mb3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}] at s=1800\sqrt{s}=1800 [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review Letter

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure
    corecore