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A Chromatic Transient Visual Evoked Potential
Based Encoding/Decoding Approach

for Brain–Computer Interface
Sui Man Lai, Member, IEEE, Zhiguo Zhang, Member, IEEE, Yeung Sam Hung, Senior Member, IEEE,

Zhendong Niu, and Chunqi Chang, Member, IEEE

Abstract—This paper presents a new encoding/decoding
approach to brain–computer interface (BCI) based on chro-
matic transient visual evoked potential (CTVEP). The proposed
CTVEP-based encoding/decoding approach is designed to provide
a safer and more comfortable stimulation method than the con-
ventional VEP-based stimulation methods for BCI without loss of
efficiency. For this purpose, low-frequency isoluminant chromatic
stimuli are time-encoded to serve as different input commands for
BCI control, and the superior comfortableness of the proposed
stimulation method is validated by a survey. A combination of
diversified signal processing techniques are further employed to
decode the information from CTVEP. Based on experimental
results, a properly designed configuration of the CTVEP-based
stimulation method and a tailored signal processing framework
are developed. It is demonstrated that high performance (at infor-
mation transfer rate: 58.0 bits/min, accuracy: 94.9%, false alarm
rate: 1.3%) for BCI can be achieved by means of the CTVEP-based
encoding/decoding approach. It turns out that to achieve such
good performance, only simple signal processing algorithms with
very low computational complexity are required, which makes the
method suitable for the development of a practical BCI system.
A preliminary prototype of such a system has been implemented
with demonstrated applicability.

Index Terms—Brain–computer interface (BCI), chromatic
transient visual evoked potential, electroencephalography,
time-encoded visual stimulation.

I. INTRODUCTION

B RAIN–COMPUTER interface (BCI) is an emerging tech-
nology which provides a direct communication pathway

between brain and computer without muscle activity and thus
it allows people who are completely or severely paralyzed to
reestablish communication with the world [1]–[4]. Due to the
highly noisy and nonstationary nature of brain signals, the en-
coding and decoding of brain signals for BCI are challenging
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problems and most reported methods are still not very efficient.
Hence, BCIs are considered to be devices with relatively low
communication bandwidth. Most BCIs have maximum infor-
mation transfer rate (ITR) up to 25 bits/min [4]–[6], although
a few exogenous BCIs, which require user’s sensation abilities
to elicit sensatory electrophysiological activities, can achieve
higher ITRs. For example, steady-state visual evoked poten-
tial (SSVEP)-based BCI [7] and flash onset and offset visual
evoked potential (FVEP)-based BCI [8] can achieve as high
as 51.5 bits/min and 34 bits/min, respectively. For these VEP-
based BCIs to support high ITRs, the visual stimuli used such as
LED flashes and checkerboard reversal are often modulated by
high-frequency (6–30 Hz) flickering [9] and/or luminance varia-
tion. Flickering stimuli in such high frequency range may evoke
epileptic seizures [10] and fast-varying luminance of stimuli can
easily fatigue and exhaust users [11]. Consequently, extensive
application of existing VEP-based BCI is hampered by its un-
comfortable user experience and safety concerns. Hence, it is
highly desirable to be able to deliver visual stimuli to users of
VEP-based BCIs in a more comfortable and safer manner. To
this end, we propose a new encoding/decoding approach based
on chromatic transient visual evoked potential (CTVEP), in-
stead of SSVEP and FVEP, for BCI.

CTVEPs are elicited when chromatic visual stimuli are
presented at low frequency ( Hz) and perceived within the
visual field. As shown in Fig. 1, CTVEPs are characterized by
the absence of positive deflection, and the presence of nega-
tive deflection and deflection in a typical onset/offset
transient VEP waveform, where and are responsible for
isochromatic luminance and isoluminant chromatic modulation
respectively [13]–[16]. Isoluminant chromatic stimulus with
low frequency stimulation can elicit stronger transient CTVEPs
through chromatic modulation compared with luminance
modulation. To the best of our knowledge, no medical report
indicates that such stimulation may evoke epileptic seizures
or other medical symptoms. Hence, the potential problems
of luminance modulation related fatigue and epileptic seizure
triggering, encountered in almost all of the SSVEP-based and
FVEP-based BCIs, can be avoided. The safety of the proposed
approach is due to low frequency change in the visual stimula-
tion on the one hand, and no luminance variation on the other
hand.

With low frequency change and no luminance variation in
the visual stimulation, our proposed CTVEP-based BCI is ex-
pected to be more comfortable for users than the conventional

2156-3357/$26.00 © 2011 IEEE
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Fig. 1. (a) A typical pattern onset/offset transient VEP waveform, three main
components (� � � , and � ) recommended by the International Society for
Clinical Electrophysiology of Vision (ISCEV) [12] are indicated. (b) A repre-
sentative CTVEPs obtained from one of the subjects elicited by isoluminant
chromatic stimuli. In comparison with (a), � is absent while � and � can
be clearly observed in (b).

SSVEP-based and FVEP-based BCIs. To validate this claim, we
have conducted a survey among fourteen subjects recruited in
the experimental study of this paper. In this survey the subjects
are asked to choose the most preferable stimulus among four
types of isoluminant chromatic stimuli and a simple black/white
stimulus used in luminance modulation based BCI. The survey
result shows that all subjects prefer isoluminant stimulus with
2 cycles per degree (cpd) circular grating as the most comfort-
able and easiest to focus on. Meanwhile, all subjects ranked the
simple white/black stimulus to be the least preferable one as it
easily caused fatigue.

In this paper, based on chromatic modulated CTVEPs, we
firstly propose a new encoding technique, in which isolumi-
nant chromatic stimuli are time-encoded into different codes
to serve as different input commands for BCI control. In par-
ticular, we 1) design a suitable isoluminant chromatic stimulus
which gives an optimized CTVEP response; 2) develop a time-
encoded visual stimulation method based on the designed stim-
ulus for BCI applications; 3) evaluate the performance of the
developed stimulation method with experiments; 4) design, im-
plement, and test a preliminary BCI prototype system based
on the proposed novel CTVEP encoding/decoding approach.
Through these investigations, we demonstrate that CTVEPs of
good signal quality can be elicited with proper stimulus design
and can be encoded temporally to provide multiple distinguish-
able combinations for supporting multiple BCI commands. Fur-
ther, we develop a decoding technique to utilize a combina-
tion of signal processing and pattern recognition techniques for
translating CTVEPs into BCI commands. Experimental results
show that the proposed time-encoded CTVEP-based BCI per-
forms very well with high ITR, high accuracy, and low false
alarm rate. It turns out that to achieve such good performance,
only simple signal processing algorithms with very low compu-
tational complexity are required, which makes the method suit-
able for the development of a practical BCI system.

The rest of the paper is organized as follows. Section II briefly
introduces the mechanism of CTVEP generation and stimula-
tion parameters which contribute to the quality of CTVEP. Ex-
perimental design for developing the CTVEP-based encoding/
decoding approach is introduced in Sections III. Section IV is
devoted to establish a complete signal analysis framework for
the CTVEP-based encoding/decoding approach. Experimental
results and comparisons are presented in Section V. Section VI

presents the design, implementation, and testing of a prelimi-
nary BCI prototype system based on the proposed novel CTVEP
encoding/decoding approach. Discussions and conclusions are
finally given in Section VII.

II. STIMULATION PARAMETERS OF CTVEPS

In this section, we introduce a series of stimulation parame-
ters that affect the quality of CTVEPs and then describe ways
to elicit CTVEPs with optimal signal quality.

Locations: Same as other VEPs, CTVEPs are stronger when
the stimulus is located at the center of the visual field than at
periphery, which is known as the “cortical magnification” phe-
nomenon due to the uneven cone cell distribution in the retina
[17], [18].

Spatiotemporal conditions: Robust CTVEP responses can
be elicited by isoluminant chromatic grating with appropriate
spatiotemporal conditions. In human visual system, there are
two types of visual pathways, magnocellular (M) and parvo-
cellular (P), which show considerable functional overlap, and
chromatic information is mainly handled by the P pathway
[19]–[21]. By choosing proper spatial and temporal stimulation
parameters, the functional separation between M and P path-
ways is maximized and the corresponding chromatic cortical
responses can be optimized [22]. Studies have demonstrated
that CTVEPs elicited by pattern onset/offset approach give
more robust responses than pattern reversal approach [14], [23],
which may be due to reduction in behaviour of the brain called
adaptation phenomenon [24], [25]. It is also recommended in
[14] to choose a duty cycle less than or around 20% to give
distinctive CTVEP response. On the other hand, other studies
have shown that, under onset/offset presentation, isoluminant
chromatic sinusoidal gratings with spatial frequencies 0.5–2
cpd could give a robust CTVEP response [13], [26], [27].

Color Opponent: In human visual system, color opponent
transformation is done by color opponent cells in retina for vi-
sual processing. Based on color opponent theory, there are four
different single opponent cells: red on/green off ,
green on/red off , green on/blue off
and blue on/green off , and two double opponent
cells: red–green on/red–green off and
yellow–blue on/yellow–blue off .
L, M, and S correspond to long, middle, short wavelengths,
respectively; positive and negative signs mean on and off center
arrangement of the opponent cells, respectively. There are three
fundamental opponent pairs in color space to match human
visual color opponent system, which are also known as color
constancy. They include black–white (LUM) pair, red–green
(LM) pair, and blue–yellow (S) pair. In this paper, we choose
red–green pair for stimulus design, as it can be presented in an
isoluminant mode to reduce luminance flickering related fatigue
while black–white pair is equivalent to luminance-modulation
and blue–yellow pair gives less robust and longer transient
VEP response [13], [14]. Besides, studies have shown that
increasing the contrast between red and green will elicit more
robust CTVEPs with larger amplitude and shorter latency,
and it becomes saturate at high contrast level [14], [26], [28].
Therefore, in this paper, we design the stimuli with the highest
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contrast level that our display units can afford to maximize
CTVEP responses.

In the next section, we describe the experiments to select the
optimal stimulation parameters, including spatial frequencies,
spatial arrangements of stimulation, double-opponent or single-
opponent stimulation, etc.

III. EXPERIMENTAL DESIGN

Two experiments were conducted with the aim to design the
CTVEP-based decoding/encoding approach for BCI control.
Experiment 1 was to design isoluminant chromatic stimuli
with appropriate spatiotemporal parameters to give optimized
CTVEP responses by varying spatial frequencies and arrange-
ments of the stimuli. Experiment 2 was to study and evaluate
the performance with the designed time-encoded CTVEP visual
stimulation method under different configurations, include:
double-opponent stimuli (DOS) and single-opponent stimuli
(SOS), adaptive averaging (AA), and nonadaptive averaging
(NAA), and different combinations of spatial filters used in
subsequent decoding processes. Based on the results of the two
experiments, we could find the most effective configurations of
decoding/encoding for the CTVEP-based BCI.

A. Visual Stimuli

Isoluminant chromatic sinusoidal gratings were presented on
a DiamondDigital DV998FDB 19-in Flat CRT color monitor.
Graphical control was managed by ATI Radeon X1300 graphic
card. The monitor refreshing rate was 85 Hz and resolution of
the screen was 1280 960 pixels, equivalent to 27 20 .

In Experiment 1, the stimuli used were isoluminant red–green
horizontal or circular sinusoidal grating with spatial frequen-
cies, 0.33, 1, 2, 4, 8 cpd, which varied within each subset of
experiment and they were presented at the center of the screen
with 3 diameter, having a small black dot as fixation center.

In Experiment 2, according to both the investigation of signal
quality in Experiment 1, as shown in Section V-A later, and
the survey on comfortableness as described in Section I, for the
sake of optimal signal quality and user comfortableness, iso-
luminant red–green circular sinusoidal gratings with 2 cpd of
spatial frequency were used as stimuli for performance study of
DOS, while isoluminant pure red/green filled circles were used
as stimuli for performance study of SOS. Fig. 2(a) and (b) show
the appearance of DOS and SOS respectively. For both studies,
six stimuli with 3 diameter each were presented at six locations
as shown in Fig. 2, and each of them had a small black dot as
fixation center.

In both experiments, stimuli were spatially low-pass filtered
at 10 cpd to minimize chromatic aberration [21], [29], [30]. A
color ratio , defined by red luminance to sum of red and
green luminance , was used to provide pure
color contrasting without luminance intrusion. This ratio was
chosen to closely match to human equiluminant point [31]. In
CIE XYZ coordinate system, red is defined as

; green as and the mean is
with a mean luminance of 20 cd/m , where

( ) represents the chromaticity coordinate in CIE 1931 XYZ
color space.

Fig. 2. Appearance and position of (a) DOS, (b) SOS presented on the screen.
Except for the color of stimuli in (b) being different from (a), other specifications
in (b) are the same as illustrated in (a).

In pattern onset/offset presentation for both experiments,
stimuli were turned on for 47 ms and turned off for 200 ms,
resulting in a duty cycle of 19%. A complete onset/offset cycle
with a duration of 247 ms denoted a code of “1,” while one
silent cycle with a duration of 247 ms denoted a code of “0.”
As a result, a 4-bit “1-1-0-0” code would take 988 ms 1 s to
complete.

B. EEG Recording

Electroencephalography (EEG) was recorded binocularly
using a NeuroScan Quik-cap electrode placement system with
12 and 19 Ag/AgCl electrodes in Experiment 1 and Experi-
ment 2, respectively. International 10/10 electrode placement
standard was followed for electrode positioning [32]. Twelve
Ag/AgCl scalp electrodes (FCz, PO3, POz, PO4, O1, Oz, O2,
I1, Iz, I2 for active recording, Cz for grounding and Fz for
referencing) and nineteen Ag/AgCl scalp electrodes (FCz, Pz,
PO7, PO3, POz, PO4, PO8, PO9, O1, Oz, O2, PO10, I1, Iz,
I2, T7, T8 for active recording, Cz for grounding and Fz for
referencing) were used in Experiments 1 and 2, respectively.
Fig. 3 shows the position of electrodes used in Experiment 2.
All electrodes used were kept at an impedance of less than 5
k and monitored under the built-in impedance measurement
module. Signals were recorded using two synchronized Neu-
roScan SynAmps RT amplifiers (Compumedics NeuroScan, El
Paso, TX,) and signal analysis was done through SCAN 4.3
(NeuroScan) and MATLAB 7.7 (Mathworks, Natick, MA). In
both experiments, EEG signals were continuously recorded,
filtered (0.05–200 Hz, dB/oct, single pole), amplified 15
folds and digitized at a sampling rate of 1 kHz with 24 bit
resolution.

In Experiment 1, once the data were collected from each sub-
ject, they were bandpass filtered at 1–40 Hz using a FIR filter
with a specification of dB/oct and zero phase shift and seg-
mented into 600 of 1000 ms epochs in total for 10 subsets of ex-
periment. Bipolar spatial filtering by subtracting Oz with either
O1 or O2 was used to enhance signal-to-noise ratio (SNR). Each
subset of experiment was formed by 20 segments. Each segment
consisted of a notification sound at first. After 0.5 s, three con-
secutive “1-1-0-0” presentations were presented with a notifica-
tion sound right at the end, followed by 1.5 s resting. Thus, the
total time taken for each segment was approximately 5 s. Even-
tually, 60 epochs (20 segments and three individual “1-1-0-0”
presentations per segment) were collected for each subset of the
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Fig. 3. Position of electrodes used in the performance studies for DOS and
SOS. Solid circles represent active electrodes while dotted and dashed circles
represent reference (Cz) and ground electrode (Fz), respectively.

experiment. Ten subsets of the experiment for horizontal and
circular gratings, with spatial frequencies at 0.33, 1, 2, 4, and 8
cpd, were collected for each subject. The background was kept
with the same mean chromaticity and luminance (20 cd/m ),
and with the same small black fixation at the center throughout
the experiment. Calibration was done with Spyder3 Elite and
CHY 631 lightmeter. Viewing distance was 76 cm and stimuli
were viewed binocularly.

In Experiment 2, EEG data under the same bandpass filtering
configuration as in Experiment 1 were segmented into 720
of 1000 ms epochs in total for twelve subsets of experiment.
Six subsets of data with six corresponding codes were used
as training data and another six subsets of data were used
as testing data. Their roles would be swapped for two-fold
cross validation. For unipolar referencing, we analyzed signals
from Oz. For bipolar filtering, we analyzed signals from Oz
subtracted by one of the electrodes: O1, O2, PO7, or PO8. For
other filtering techniques, we used all 17 active electrodes for
signal processing. Six 4-bit codes (0-0-1-1, 0-1-0-1, 0-1-1-0,
1-0-0-1, 1-0-1-0, 1-1-0-0) were adopted and presented simul-
taneously. In each set of experiments, subjects were instructed
to focus at one of the corresponding codes. In total, 12 subsets
of experiments for six codes (two subsets of experiments for
each code) were collected for each subject. Other experimental
parameters used were the same as described in Experiment 1.

C. Rationale for Codes Selection

Theoretically, the possible number of inputs is the integral
numbers of bit used to the power of two, i.e., 4-bit binary en-
coding scheme has 16 different codes, represented in binary op-
eration. Although using all 16 codes might achieve a high infor-
mation transfer rate (ITR), in practice the tradeoff will be low
accuracy and high false alarm rate (FAR) and thus result in low
ITR. This can be reasoned as follows. Codes with one “1” or no
“1” are hard to be distinguished from background brain activi-
ties which has a code of 0-0-0-0, while codes with large number
of “1s” (three “1s” or four “1s”) are hard to be distinguished

from each other and other codes with two “1s”. In addition,
codes with more “1s” are more vulnerable to brain adaptation
phenomena (i.e., CTVEP signals may have weaker responses
after prolonged exposure). It is desirable to choose a subset of
codes which have reasonably large distance from each other. For
this purpose we can use a subset of codes with two “1s” in the
4-bit binary encoding scheme, i.e., the six 4-bit codes described
above. It can be easily verified that the distance between any
pair of these six selected codes is either 2 or 4, i.e., 2 or 4 bits
different from each other. In addition, they have also a distance
of 2 to the background code 0-0-0-0. We might also include the
code 1-1-1-1 since it has a distance of 2 to all the six codes with
two “1s” and a distance of 4 to the background code. However,
since it is easier to arrange six codes on the screen than seven
codes, and the 1-1-1-1 code with four “1s” may be more vul-
nerable to brain adaptation phenomena, we finally choose only
the six codes with two “1s” to achieve a good tradeoff between
number of control inputs and quality of input signals.

D. Subjects

In Experiment 1, EEG data were collected from four subjects
(four males, age range 21–24 years). In Experiment 2, EEG data
were collected from 14 subjects (11 males and 3 females, age
range 21–28 years, mean years) for performance study
with DOS and five subjects (five males, age range 21–24 years)
for performance study with SOS. All subjects had normal or
corrected vision of Snellen visual acuity and were
classified as normal color vision by the Ishihara test and the
Farnsworth–Munsell 100-Hue test. No previous ocular or sys-
temic disease was reported for these subjects. Subjects were
seated at a comfortable chair and experiments were done in a
dim, unshielded office laboratory with reasonable activities to
simulate real-life situation. Subjects were instructed to gaze at
the fixation after the first notification sound, minimizing their
eye blinking, and to rest after the second notification sound.
A short break of about 45 s–1 min between two consecutive
subsets of experiment was given to subjects for the purpose of
resting.

IV. SIGNAL PROCESSING

A. Matched Filter and Inter-Epoch Analysis for Experiment 1

We first adopted two approaches: matched filter analysis and
inter-epoch analysis, to determine the optimal stimulation pa-
rameters for eliciting CTVEPs based on the data recorded in
Experiment 1.

A matched filter or a template was the average of 60 epochs
in one subset of experiment. The quality of a matched filter
was evaluated by SNR, where the “signal” and “noise” were re-
spectively the recorded data in signal window (“1-1”) and noise
window (“0-0”). A matched filter with a higher SNR would per-
form better when it was used as a template for BCI classification.

Inter-epoch analysis is an alternative approach to compare
the quality of CTVEPs. The 60 epochs in one subset of exper-
iment were partially averaged across three consecutive epochs,
resulting in 20 inter-averaged epochs. We next analyzed the
quality of these three-fold inter-averaged epochs under different
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spatial frequencies and arrangements in terms of three parame-
ters: SNR, -to- amplitude, and -to- latency con-
sistency. -to- amplitudes were the differences between
amplitudes of and (see Fig. 1), and they were nor-
malized for each subject by the maximum value of each sub-
ject. Latencies, referring to the time point of in CTVEP, re-
flected the durations of VEP responses after stimulation for each
subject, and they were normalized by subtracting the minimum
latency of each subject. Smaller variation in the latency distri-
bution meant higher consistency of CTVEP responses. All the
three parameters were important for choosing suitable stimula-
tion parameters. For an inter-averaged epoch with higher SNR,
or/and larger -to- amplitude, or/and higher latency con-
sistency with its corresponding matched filter, it would have a
higher correlation with the correct matched filter and lower cor-
relation with other unrelated matched filters and noise.

One-way ANOVA and Tukey’s Honestly Significant Differ-
ences (HSD) post-hoc test were performed to determine the
effect of spatial frequency with different grating arrangement
on the SNR of the “1-1-0-0” three-fold inter-averaged epochs.
ANOVA was used to test for existence of any mean difference
between multiple group distributions while Tukey’s HSD
post-hoc test technique was used afterward to locate which
groups were contributing to the differences.

B. Feature Extraction and Classification for Experiment 2

We next proposed a signal processing framework for de-
coding the EEG signals into output commands associated with
the user’s intention. The decoding framework consisted of sev-
eral modules including: temporal filtering, adaptive averaging,
spatial filtering, matched filtering and feature classification, as
seen in Fig. 4. In short, temporal filtering, adaptive averaging
and spatial filtering were used to improve the SNR of the signal
of interest. Matched filtering was used to recognize the signals
by comparing the extracted signal with appropriate templates.
Feature classification was used to classify the extracted features
into proper classes.

1) Nonadaptive Averaging and Adaptive Averaging: Av-
eraging is the simplest and most commonly used method to
improve the quality of event-related EEG signals [33]. Upon
across-epoch averaging, coherent signals will be retained
while incoherent signals and noise will be suppressed. Due to
the inherent classification speed-accuracy tradeoff for system
involving averaging, the number of averaging epochs per
classification depends largely on the requirement of the BCI
application.

In this paper, we tested two different averaging approaches
to improve the SNR of the CTVEPs: nonadaptive averaging
(NAA) and adaptive averaging (AA). The NAA approach was
to average a fixed number of epochs per classification, and the
optimal number was determined in the training phase as the one
having the best BCI performance. The AA approach was to av-
erage a variable number of epochs per classification, which de-
pended on the classification result right after each epoch was
processed. More precisely, when an epoch was collected and
processed, the classification would immediately be done and be
used to determine whether further averaging was necessary. If
the classifier gave a confident result (the correlation coefficient

Fig. 4. Signal processing flow charts when using (a) NAA or (b) AA ap-
proaches in the time-encoded CTVEP visual stimulation method for BCI.

between the filtered signals and only one of the matched filters
was above the thresholding), the classification was finished and
the result would be sent out as the control command for BCI.
If the classifier did not give a confident result, the next epoch
would be averaged into the previous epoch to improve the SNR.
Then the classifier would proceed with this averaged epoch to
make a new classification. The process would be executed it-
eratively until a confident result was obtained or three epochs
(the maximum number of epochs used in the averaging) had
been averaged. If the final result did not give a confident result,
the system returned an unclassified state called “Idle.” Else, the
system returned a classified state labeled with the corresponding
control command. Fig. 4(a) and (b) show the signal flow charts
of NAA and AA approaches, respectively.

2) Temporal Filtering: The purpose of temporal filtering is
to improve the quality of EEG signals by removing unrelated
signals and noise beyond the frequencies of interest. We used a
FIR bandpass filter with a passband of 1–40 Hz as the temporal
filter.

3) Spatial Filtering: The purpose of spatial filtering is to im-
prove EEG signal quality by removing unrelated signals and
noise according to their spatial distribution across different elec-
trodes. We implemented several spatial filtering techniques and
their different possible combinations. Their performances were
evaluated and compared using datasets of Experiment 2. Fig. 5
illustrates the three stages of spatial filters and six spatial fil-
tering techniques under test. In total 20 physically meaningful
combinations of these spatial filters were studied.

The first stage spatial filters included bipolar and common
average referencing (CAR). Bipolar derivation derived the first
spatial derivative between two inputs to enhance differences in
the voltage gradient in one direction and also removed corre-
lated noise. CAR derived the spatial derivative between inputs
and the averaged template of these inputs, in order to remove
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Fig. 5. Signal flow chart of spatial filters. Six spatial filtering techniques with
unipolar referencing are categorized into three stages (first, second, third stage
filters).

the correlated noise across these inputs and suppress uncorre-
lated noise [34]. Unipolar referencing was also considered in
the first stage filter as a control measurement.

The second stage spatial filters were principal component
analysis (PCA) based filtering and they include three alterna-
tives. PCA-1stPC decomposed inputs into different principal
components (PC) and reconstructed a single output according to
the most dominant PC with respect to its power. The PCA-RP
(residual power) denoising and PCA-SER (selective eigen-rate)
denoising reconstructed outputs with the same numbers of in-
puts by removing PCs but with different criteria. PCA-RP re-
moved PCs that accounted for the least 5% eigen-values [35],
while PCA-SER removed eigen-value sorted PCs that had dif-
ferences of normalized consecutive eigen-value no more than a
chosen threshold [36].

The third stage spatial filter was independent component
analysis (ICA). ICA performed decomposition of inputs into a
set of independent components (IC) and the most suitable IC
was chosen as output automatically by comparing ICs with all
matched filters. Matched filtering is discussed in the following.

4) Matched Filtering: The purpose of matched filtering is
to find the corresponding template having the best correlation
with the EEG signals and thereby to reveal the user intention.
Matched filtering based on zero-lag cross-correlation coeffi-
cients was performed to decode the EEG signals by comparing
them with matched filters (templates) for different codes. A
higher correlation coefficient implied a better matching to the
user’s intention. In the training phase, six 4-bit codes with
60 epochs were collected from each subject. Then, different
matched filters were obtained for different codes through
coherent averaging.

Fig. 6 shows the experimental results of different matched
filters in the 4-bit coding scheme for CTVEPs, each with 60
epochs averaged. In the figure the mean and standard deviation
of the 60 epochs of EEG signals are plotted. Since the standard
deviation seems large in the plot, we must clarify that this is the
standard deviation of the 60 raw signals. However, the standard
deviation of the estimated CTVEP templates should be

times lower. Therefore the estimates of the CTVEP tem-
plates are actually quite reliable.

5) Feature Classification: After correlation coefficients of
the EEG epochs were extracted, we used a simple thresholding
approach to classify them into the correct class for device con-
trol. For each classification, a set of correlation coefficients were

Fig. 6. Matched filter plots for all six codes: (a) 0-0-1-1, (b) 0-1-0-1, (c)
0-1-1-0, (d) 1-0-0-1, (e) 1-0-1-0, (f) 1-1-0-0 under the designed 4-bit coding
scheme. CTVEPs in all of these matched filters were elicited by pattern
onset/offset isoluminant red–green circular 2 cpd sinusoidal gratings (DOS).
Each matched filter was obtained by averaging 60 epochs with the same code.
Mean and �� S.D. of the 60 epochs of EEG signals are indicated by thick and
thin lines, respectively.

returned from matched filtering, a threshold would then be ap-
plied to classify them. If there was only one coefficient ex-
ceeding the threshold, the result would be classified into the
corresponding class. Otherwise, the result would be classified
into a null class called “idle state.” As classes of stimuli during
training phase were known, we could find the best threshold
for correlation coefficients by comparison between target and
non-target data groups. Afterwards, we could find the optimal
local threshold of each code from the population and then could
obtain a global threshold by averaging all local thresholds. In
our experiments, we found that different local thresholds were
similar to each others when enough samples were provided. Fi-
nally, this global threshold was used to classify unknown testing
data that were independent of the training data and performance
evaluation was done based on the classification results. This
classification approach was simple and suitable for real time im-
plementation, and it achieved a satisfactory BCI performance in
our experiments.

C. Performance Measures

1) Information Transfer Rate: For performance measure-
ment of communication and control systems, the information
transfer rate (ITR) was used to provide an objective performance
indicator with consideration of both accuracy and speed [37],
[38]. For a BCI with possible selections and a command
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classification accuracy of , we assumed that it had the same
selection probability for each desired selection and selection
probability for each undesired selection. Then
the bit rate for each decision can be expressed as

(1)

ITR would then be calculated by dividing bit rate by com-
mand transfer interval (CTI), which is defined as the ratio be-
tween the total experimental time (expressed in minute) and the
total number of command decisions made during this period of
time.

2) Accuracy and False Alarm Rate: Accuracy is defined as
the number of correct classifications divided by the total number
of classifications. The false alarm rate (FAR) is defined as the
number of misclassifications (apart from idle state) divided by
the total number of classifications. Consequently, accuracy and
FAR can be described as the probability of making correct clas-
sification and the probability of making wrong classification
apart from idle state. It is important to evaluate both accuracy
and FAR. For example, higher accuracy will improve the reli-
ability of the BCI and lower FAR will decrease the chance of
controlling the BCI with a wrong command, both of which are
crucial to a high-precision and error-intolerable system.

D. Performance Evaluation

In Experiment 2, classification results were evaluated to es-
timate the performance, based on training and testing data sets
collected, in terms of ITR, accuracy and FAR. These measures
were used to evaluate the performance using different con-
figurations including AA and NAA approaches, and different
combinations of spatial filters, under DOS based time-encoded
CTVEP visual stimulation.

V. RESULTS

A. Experiment 1: Choice of a Suitable Visual Stimulus

1) Matched Filter Analysis: We found that SNR under both
circular and horizontal stimulus presentations exhibited similar
bandpass characteristics, as shown in Fig. 7. A relatively high
SNR was found at 2–4 cpd and SNR drops beyond this range.
At 2–4 cpd for both circular and horizontal stimuli, similar SNR
values were obtained, ranging from 13.7–16.1 dB. For higher
spatial frequency of 8 cpd, the average SNR was 8.6 dB. For
lower spatial frequency, the average SNR was 11.1 dB for 1 cpd
and 8.6 dB for 0.33 cpd. These findings are consistent with sim-
ilar studies showing bandpass characteristics of the VEP signal
strength when spatial frequency is varied [14], [26], and sug-
gest that when the isoluminant chromatic sinusoidal grating is
designed with spatial frequency of 2 or 4 cpd, either circular
or horizontal arrangement can give a relatively good quality of
matched filtering.

2) Inter-Epoch Analysis: Firstly, we analyzed SNR of
epochs with different spatial configurations (Fig. 8). One-way
ANOVA revealed that SNR was not significantly different
between circular and horizontal gratings with 2 and 4 cpd

. However, ANOVA followed by HSD post-hoc
test revealed that SNRs of these four configurations (circular 2,

Fig. 7. SNR plots of “1-1-0-0” matched filter with (a) circular and (b) hori-
zontal isoluminant chromatic sinusoidal gratings as a function of spatial fre-
quency.

Fig. 8. SNR plots of “1-1-0-0” partially averaged epoch with (a) circular and
(b) horizontal isoluminant chromatic sinusoidal gratings as a function of spatial
frequency. Error bars indicate �� S.D.

Fig. 9. Normalized amplitude plots of “1-1-0-0” partially averaged epoch for
the first stimulation with (a) circular, (b) horizontal as a function of spatial fre-
quency. Error bars indicate �� S.D.

4 cpd and horizontal 2, 4 cpd) were significantly greater than
other grating arrangements with different spatial frequencies

. This concludes that these four configurations are
relatively better than their counterparts in term of SNR.

Secondly, we analyzed the -to- amplitude and latency
consistency of different spatial configurations, respectively
(Figs. 9 and 10). We found that the results showed bandpass
spatial tuning characteristic with the -to- amplitudes
peaked at 2–4 cpd for both circular and horizontal gratings
and diminished below 2 cpd and above 4 cpd, and a U-shape
characteristic with shorter latencies at 1–4 cpd and longer
beyond this region.

Lastly, for both gratings, normalized -to- amplitudes
and latencies were not significantly different between the first
and the second CTVEPs in “1-1-0-0” epochs with the same spa-
tial frequency respectively and , sug-
gesting that both -to- amplitude and latency of CTVEP
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Fig. 10. Normalized latency difference plots of “1-1-0-0” partially averaged
epoch for the first stimulation with (a) circular, (b) horizontal gratings. Latencies
were normalized by subtracting the minimum latency of each subject from their
VEP latencies. Error bars indicate �� S.D.

TABLE I
SUMMARY OF THE THREE PERFORMANCE MEASURES FOR DOS WITH AA AND

NAA APPROACHES, AND DIFFERENT FIRST STAGE SPATIAL FILTERS

TABLE II
SUMMARY OF THE THREE PERFORMANCE MEASURES FOR SOS WITH AA AND

NAA APPROACHES, AND DIFFERENT FIRST STAGE SPATIAL FILTERS

elicited by the second presentation of the stimulus were not dif-
ferent from the first presentation under the spatiotemporal pa-
rameters used.

B. Experiment 2: Performance of CTVEP-Based
Encoding/Decoding

1) Performance Study With DOS and SOS: The same perfor-
mance evaluation procedures were used in performance study
with DOS and SOS. For SOS, as we intendedto give a pilot and
brief comparison with DOS, we would only show the results
but would not include statistical analysis for them due to lim-
ited sample sizes (five subjects).

To compare different 1st stage spatial filters, the performance
measures in terms of ITR, accuracy and FAR, were summa-
rized in Tables I and II for DOS and SOS, respectively. Bipolar
filtering gave a significantly ( , Wilcoxon signed
rank test) better performance when compared with unipolar
referencing. Yet, CAR filtering did not show significantly
( , Wilcoxon signed rank test) better performance.

However, when we considered these performance measures
(ITRs shown in Fig. 11, but accuracy and FAR not shown to
save space), for DOS and SOS with NAA, and DOS with AA,
we found that applying any combinations of second and third
stage spatial filters did not improve the performance, in com-
parison with the corresponding performance without the second

Fig. 11. In double-opponent stimulus presentation, ITR with different spatial
filter combinations across fourteen subjects for (a) adaptive averaging and (b)
nonadaptive averaging approaches are summarized above. Data are grouped into
three main categories according to different first stage spatial filters. Data in each
group correspond to different combinations of second and third stage spatial
filters. Error bars indicate �� S.D.

and/or third stage spatial filter. For SOS with AA, applying spa-
tial filters based on PCA denoising followed by ICA or pure ICA
might give better performance than without using any second
or/and third stage spatial filter.

In terms of ITR and accuracy for both DOS and SOS, we
found that AA performed significantly better than NAA (

, Wilcoxon signed rank test) when only the 1st stage spa-
tial filter is employed. In term of FAR, for both DOS and SOS,
it was inconclusive to tell whether AA performed significantly
better than NAA. The statistical results of DOS are summarized
in Table III.

With DOS, the optimal numbers of averaging epochs were
and for AA and NAA, respectively; whereas

with SOS, the optimal numbers of averaging epochs were
and for AA and NAA, respectively. In addition,

when NAA approach was used, we found that, as the number of
averaging epochs increased, the accuracy would increase, the
ITR and FAR would decrease and approach zero.

From all these results, the following findings provide the basis
for our recommendations on decoding processes for DOS:

1) any combination of the second and third stage spatial filters
did not improve the performance;
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TABLE III
STATISTICAL ANALYSIS SUMMARY OF THE THREE PERFORMANCE MEASURES

OF DOS WITH AA AND NAA APPROACHES, AND DIFFERENT FIRST STAGE

SPATIAL FILTERS

TABLE IV
COMPARISON OF THE MEAN OF ITR, ACCURACY, FAR, AND THE NUMBER OF

AVERAGING EPOCHS BETWEEN DOS AND SOS PRESENTATIONS UNDER AA
AND NAA APPROACHES

2) bipolar filtering gave significantly better performance than
unipolar referencing but CAR filtering did not;

3) adaptive averaging performed significantly better than non-
adaptive averaging.

2) Comparison Between DOS and SOS: Here, we only chose
to apply bipolar spatial filtering technique for both types of
stimuli to facilitate a fair comparison. We did the comparison
based on three performance measures, namely: ITR, accuracy,
and FAR, and the number of averaging for both AA and NAA
approaches.

Under the AA approach, all performance measures and the
numbers of averaging showed that DOS gave a significantly
better performance than SOS (ITR: , accuracy:

, FAR: , number of averaging: ,
Wilcoxon rank sum test). The results are summarized in
Table IV. When DOS was compared against SOS, there was an
increase of 38.1 bits/min in mean ITR, an increase of 30.0% in
mean accuracy, a decrease of 6.4% in mean FAR and a decrease
of 0.39 epochs in the mean number of averaging.

Under the NAA approach, two performance measures (ITR
and accuracy) showed that DOS gave a significantly better
performance than SOS (ITR, , accuracy, ,
Wilcoxon rank sum test). On the other hand, FAR and the
number of averaging did not show a significant improvement
in performance. When DOS was compared against SOS, there
was an increase of 28.6 bits/min in mean ITR, an increase of
45.0% in mean accuracy, a decrease of 7.8% in mean FAR and
without any difference in the mean number of averaging.

VI. DESIGN AND IMPLEMENTATION OF A PRACTICAL SYSTEM

We suggest that the proposed BCI method can be applied to,
but not limited to, word processing system, internet browsing
system, clinical communication system, gaming system, etc.
For example, word entry can be achieved by choosing the desig-
nated letter or word through menu-based selection with all pos-
sible selections inside the selection hierarchy.

The practical implementation of the proposed CTVEP BCI
system consists of four major components: 1) visual stimuli
presentation of double-opponent circular grating as shown in
Fig. 2(a), 2) acquisition of EEG signals, 3) online real-time com-
mand detection using the signal processing techniques proposed
in this paper including preprocessing, feature extraction, and
classification, and 4) control of external devices in particular
applications under consideration as discussed above.

The novelty here lies in the proof of feasibility of the pro-
posed BCI protocol for development of a practical, cost-effec-
tive and portable BCI prototype. In contrast to the commercial
Compumedics Neuroscan system which is expensive, bulky and
suitable only for offline research purpose, the prototype to be
implemented is portable, low-cost, and capable of realtime pro-
cessing. This however can only be achieved by a compromise
in the signal quality of the prototype in comparison with that of
the Neuroscan system.

A. Stimuli Presentation and Triggering System

In the experimental study reported in Section V, the stimu-
lation is presented by the STIM (Compumedics Neuroscan, El
Paso, TX) system using a CRT monitor. STIM provides syn-
chronization information from parallel port of the computer,
which is encoded in a way the SCAN 4.3 (Neuroscan) EEG ac-
quisition system can identify. For a practical BCI system, we
need to develop our own visual stimulation system. The visual
stimulation control software is developed using Microsoft Di-
rectX and C++ programming language, while the stimuli are
presented on a LCD monitor instead of CRT. LCD monitor is
more convenient and readily available, though it may not per-
form as good as CRT in VEP measurement. The frequency of
the LCD monitor used in our prototype is 60 Hz. Using DirectX,
visual stimulation is synchronized with the refresh rate of the
monitor. For each bit of stimulation (an onset of a double-op-
ponent circular grating stimulation), the stimulation picture is
presented for three refresh cycles followed by 12 refresh cycles
of silence, i.e., 50 ms stimulus presentation and 200 ms back-
ground presentation. These result in a 250 ms onset/offset dura-
tion with a duty cycle of 20%, which is close to the parameters
(247 ms and 19%, respectively) used in the experimental study.
The same six 4-bit codes as used in the experimental study are
adopted in the BCI prototype, and the arrangement of the six
codes on the monitor is also the same as shown in Fig. 2(a).

A most important issue is to synchronize visual stimulation
with EEG signal acquisition, because coherent averaging of
CTVEP is required for both AA and NAA. To this end, we
output a trigger signal from the visual stimulation computer.
The trigger, synchronized with the onset of visual stimulus, is
an electrical signal output from the USB port of the computer
and measured by the EEG signal acquisition device.
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B. Signal Acquisition Unit

For the sake of portability, cost effectiveness, and online
real-time acquisition in the prototype, we use a simple 16-bit
two-channel bio-signal acquisition device made in-house, with
common mode rejection ratio (CMRR) greater than 98 dB and a
sampling rate of 1 kHz. The device has a USB interface through
which the data can be read into a computer. One channel is
used to record EEG signal at position Oz on the head, and the
other channel is used to record the trigger signal outputted from
the visual stimulation system.

C. Signal Processing System

As BCI is a real-time communication system, computational
complexity of the signal processing techniques used is an
important consideration. As demonstrated by the results of
the experimental study and shown in Section V, the decoding
framework recommended in this study only includes bipolar
filtering, matched filtering and averaging across a small number
of epochs, and its complexity is actually very low. We do not
use signal processing techniques, such as PCA and ICA, which
require a large amount of computational resources, as they do
not offer better performance in our CTVEP encoding/decoding
protocol. Therefore, the complexity is not an issue for our
BCI prototype. Due to the low computation complexity, the
signal processing can be implemented on a MCU chip, FPGA,
portable mobile computing device such as iPhone. In our
current prototype, however, for the ease of implementation, we
use a personal computer, and the EEG signals are read from the
signal acquisition unit and analyzed using MATLAB.

D. Result and Discussion

The practical BCI prototype has been tested on one young
male subject, and Experiment 2 of the experimental study is re-
peated for this subject using the prototype. For each of the six
4-bit codes, 60 epochs of CTVEP signals are collected and aver-
aged to obtain the CTVEP template used for matched filtering.
The six averaged CTVEP templates for this subject are shown
in Fig. 12.

Although the result of the BCI prototype is not as good as
that shown in Fig. 6 obtained using the commercial Neuroscan
EEG measurement system, it is evident that the six codes of the
CTVEP templates are readily recognizable. Therefore, the BCI
prototype should work for this subject.

The preliminary result on the BCI prototype, in addition to
the encouraging experimental study, further demonstrates the
practical applicability of a novel safe and comfortable BCI
system based on our proposed CTVEP encoding/decoding
method, with potentially high ITR.

VII. DISCUSSION AND CONCLUSION

A. Development Summary

In the optimal isoluminant chromatic stimulus determination
study of Experiment 1, we found that for 3 red–green isolu-
minant chromatic sinusoidal grating with onset/offset presenta-
tion (duty cycle: 20%, period: 250 ms), both circular and hor-
izontal gratings with spatial frequencies at 2–4 cpd gave rela-
tively strong and consistent CTVEP responses. Under consider-

Fig. 12. Averaged CTVEP templates over 60 epochs for all six 4-bit codes for
the subject tested using the BCI prototype: (a) 0-0-1-1, (b) 0-1-0-1, (c) 0-1-1-0,
(d) 1-0-0-1, (e) 1-0-1-0, (f) 1-1-0-0; CTVEPs were elicited by pattern onset/
offset isoluminant red–green circular 2cpd sinusoidal gratings (DOS).

ations of both objective and subjective aspects, circular grating
with 2 cpd is recommended.

In the performance evaluation study of Experiment 2, we
determined the best configurations for BCI control. We found
that using double opponent stimuli with the combination of
bipolar filtering and AA gave a significant improvement in
performance over other stimulation configurations and signal
processing techniques. Subsequently, we suggest applying six
3 isoluminant chromatic red/green sinusoidal 2 cpd gratings as
stimuli for six commands, together with a decoding framework
consisting of bipolar spatial filtering, adaptive averaging and
matched filtering to give the best performance.

The average, the peak and the worst performance measures
for fourteen subjects are summarized in Table V. From these
results, we conclude that these configurations can achieve high
performance and is suitable for potential BCI applications.

B. Future Directions

1) Online Performance Evaluation: Evaluation of online
performance is an important experimental research direction
to provide an objective measurement for the practical perfor-
mance of the proposed method, and thereby to give a more
precise and accurate picture of suitable BCI applications. Due
to the presence of feedback in online BCI control, performance
measured in online evaluation may be different from offline
evaluation found by our study reported in this paper. It would
be a very challenging task to assess the objective performance
when the user controls the system freely. Typically, BCI perfor-
mance can be assessed by asking subjects to control designed
evaluation protocol. As a result, it is important to design the
online evaluation protocol to match the online BCI control
scenario as closely as possible.
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TABLE V
SUMMARY OF PERFORMANCE MEASURES UNDER ISOLUMINANT

CHROMATIC 2 CPD GRATINGS, BIPOLAR FILTERING, ADAPTIVE

AVERAGING AND MATCHED FILTERING TECHNIQUES

2) K-Bit CTVEP Encoding: We have determined the optimal
visual stimuli and electrode layout for the CTVEP-based BCI.
Furthermore, we have developed a new CTVEP encoding tech-
nique to encode user intentions into EEG by presentation of
stimuli with different timings to provide different codes for BCI
control. From the results of our study and knowledge in the field,
we determined that duration for each bit should be 0.25 s to
allow enough presentation time of a distinctive CTVEP while
minimizing the delay between presentations of consecutive bits,
i.e., maximum bit-repetition frequency is 4 Hz.

In this study, we have designed a 4-bit encoding scheme and
six corresponding codes were chosen 1) to maximize inter-stim-
ulus and artifact separation, 2) to minimize brain adaptation phe-
nomenon and, 3) to maximize the number of inputs. From the
experimental results, we found that the proposed time encoding
approach could give high performance for BCI control.

To further improve the proposed method when used in BCI
control, increasing the number of inputs can directly boost the
performance. Although this action inherently decreases the
speed of the system, it may be compensated and make a positive
contribution to ITR. This can be achieved by generalizing the
4-bit CTVEP encoding considered in this paper into -bit
CTVEP encoding where is a positive integer. Based on the
considerations of inter-stimulus separation, artifact separation,
brain adaptation phenomenon and numbers of inputs, we sug-
gest that the number of stimulating bits (“1”) and the number
of non-stimulating bits (“0”) should be identical or close in a

-bit CTVEP encoding scheme.
3) Advanced Feature Extraction and Classification: Since

essential information is encoded in the EEG signals, it is impor-
tant to develop advanced feature extraction techniques to extract
information effectively. In this study, we have shown that the
matched filtering can extract features effectively. Apart from
this, Common Spatial Pattern (CSP), wavelet transform, and
other advanced signal processing techniques have been shown
to be effective in several BCI applications [39]–[45]. As time-
encoded CTVEPs carry certain distinguishable information in
time and frequency domains, it is worth studying the suitability
of the proposed methods and other possible techniques for fea-
ture extraction.

An effective classifier serves as a key to provide fast and accu-
rate classification using the extracted features. As the distribu-
tion of correlation coefficients extracted from matched filtering
appears to be classifiable effectively by linear classifiers and
these classifiers require relatively low computational resources,
it is worthwhile to explore the practical applicability of linear
classification in the proposed method for BCI control. Other

classification methods like support vector machine (SVM) and
neural network classifiers have been previously studied by other
BCI research groups and shown to be useful for different BCI
designs [46]–[50]. It is worthwhile to explore their performance
and suitability as well in the future.

To conclude, we have studied and designed a new encoding
and decoding approach for high performance BCI control based
on CTVEPs that offers a simple, safe, user-friendly and com-
fortable solution to BCI control. A preliminary BCI prototype
based on this method has been developed with demonstrated ap-
plicability. Since these advantages are essential for a successful
and widely-applicable BCI design, we hope that the contribu-
tions in this paper will eventually lead to the development of a
mature practical BCI system that benefits people with needs for
such a system.
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