109 research outputs found

    The Weekly January 22, 2002

    Get PDF
    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event

    Gosha-jinki-gan Reduces Transmitter Proteins and Sensory Receptors Associated with C Fiber Activation Induced by Acetic Acid in Rat Urinary Bladder

    Get PDF
    This is a preprint of an article published in [NEUROUROLOGY AND URODYNAMICS. 27(8):832-837 (2008)].ArticleNEUROUROLOGY AND URODYNAMICS. 27(8):832-837 (2008)journal articl

    Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

    Get PDF
    Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency NonhydrostaticModel (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborneW-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separatelyfor an intercomparative study. A radar product simulator that is compatible with both microphysicsschemes is developed to enable a direct comparison between simulation and observation with respect to theequivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). Ingeneral, the bin model simulation shows better agreement with the observed data than the bulk modelsimulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves theresult of the bin model simulation. The results indicate that there are substantial uncertainties in the masssizeand sizeterminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snowaloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominanceof snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows thata correction for the fall velocity of hydrometeors considering a change of particle size should be introducedeven in single-moment bulk cloud microphysics

    Observation of moisture tendencies related to shallow convection

    Get PDF
    Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden-Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening has yet to be quantified. Among these processes, the importance of the moistening by shallow convection is still debated. The authors use high-frequency observations of humidity and convection from the Research Vessel (R/V) Mirai that was located in the Indian Ocean ITCZ during the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the MJO (CINDY/DYNAMO) campaign. This study is an initial attempt to directly link shallow convection to moisture variations within the lowest 4 km of the atmosphere from the convective scale to the mesoscale. Within a few tens of minutes and near shallow convection occurrences, moisture anomalies of 0.25-0.5 g kg-1 that correspond to tendencies on the order of 10-20 g kg-1 day-1 between 1 and 4 km are observed and are attributed to shallow convective clouds. On the scale of a few hours, shallow convection is associated with anomalies of 0.5-1 g kg-1 that correspond to tendencies on the order of 1-4 g kg-1 day-1 according to two independent datasets: lidar and soundings. This can be interpreted as the resultant mesoscale effect of the population of shallow convective clouds. Large-scale advective tendencies can be stronger than the moistening by shallow convection; however, the latter is a steady moisture supply whose importance can increase with the time scale. This evaluation of the moistening tendency related to shallow convection is ultimately important to develop and constrain numerical models

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix

    ライダー等を用いたエアロゾル・雲推定アルゴリズム

    No full text
    corecore