14 research outputs found

    Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties

    Get PDF
    In 2011 the JRC launched a Repository for Representative Test Materials that supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials' (WPMN) exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The JRC Repository responds to a need for availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The present report presents the physico-chemical characterisation of the multi-walled carbon nanotubes (MWCNT) from the JRC Repository: NM-400, NM-401, NM-402 and NM-403. NM-400 was selected as principal material for the OECD WPMN testing programme. They are produced by catalytic chemical vapour deposition. Each of these NMs originates from one respective batch of commercially manufactured MWCNT. They are nanostructured, i.e. they consist of more than one graphene layer stacked on each other and rolled together as concentric tubes. The MWCNT NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action.JRC.I.4-Nanobioscience

    Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the Titanium dioxide series from the JRC repository: NM-100, NM-101, NM-102, NM-103, NM-104 and NM-105. NM-105 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-100 is included in the series as a bulk comparator. Each of these NMs originates from one batch of commercially manufactured TiO2. The TiO2 NMs may be used as representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physico-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as by the JRC.JRC.I.4-Nanobioscience

    Investigation of Hydrogen Storage Characteristics of MgH2 Based Materials with Addition of Ni and Activated Carbon

    No full text
    Magnesium-based materials are promising as hydrogen storage media due to their high theoretical hydrogen absorption capacity, abundance and low price. The subject of this study are the hydrogen sorption characteristics of the composites 80 wt % MgH2-15 wt % Ni-5 wt % activated carbon (synthesized from polyolefin wax, a waste product of polyethylene production at low pressure which will be denoted further in the text as POW) and 90 wt % MgH2-5 wt % Ni-5 wt % POW, prepared by ball milling under argon atmosphere. Structure, phase and surface composition of the samples before and after hydrogenation are determined by XRD and TEM. The maximum absorption capacity value of the composites at a temperature 573 K and after 60 min. of hydrogenation are 5.3 wt % H2 for the material with higher Ni content and 5.5 wt % H2 for the other sample. The presence of both additives—nickel and activated carbon derived from POW—has a positive impact on hydrogenation kinetics and the capacity achieved. The results from TEM characterization, e.g., the polycrystalline SAED (selected area electron diffraction) show the presence of graphite, Mg and monoclinic Mg2NiH4

    Fabrication and Characterization of Aluminum-Graphene Nano-Platelets—Nano-Sized Al4C3 Composite

    No full text
    Reinforcement of aluminum and aluminum alloys with graphene has been intensively practiced by researchers in the past dozen years. The role of Al4C3, which could be produced unintentionally or purposefully during the composite production, was controversial until it was found that nano-sized carbides were beneficial for strengthening the composites. aluminum-graphene-nano-sized Al4C3 composites were produced by us using the powder metallurgical method and subsequent annealing. The microstructure was investigated using light microscopy (LM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution transmission electron microscopy HRTEM. Nano-sized carbides were found at the interface aluminum-graphene. The formation of a chemical bond between aluminum and graphene during annealing was proved. Lower values of the microhardness and strength characteristics of the composites after extrusion and subsequent annealing during which nano-sized carbides are formed were found in comparison with those obtained after extrusion. It could be supposed that the annealing processes contribute more to the reduction in microhardness and strength characteristics than nano-sized carbides contribute to its increase. The presence of a strong chemical bond between the graphene and the aluminum is manifested in the failure pattern, which is characterized by graphene nano-platelets and nano-sized carbides fracture and semi-pulled out or semi-slipped Al4C3 from the matrix

    Fabrication and Characterization of Aluminum-Graphene Nano-Platelets—Nano-Sized Al<sub>4</sub>C<sub>3</sub> Composite

    No full text
    Reinforcement of aluminum and aluminum alloys with graphene has been intensively practiced by researchers in the past dozen years. The role of Al4C3, which could be produced unintentionally or purposefully during the composite production, was controversial until it was found that nano-sized carbides were beneficial for strengthening the composites. aluminum-graphene-nano-sized Al4C3 composites were produced by us using the powder metallurgical method and subsequent annealing. The microstructure was investigated using light microscopy (LM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution transmission electron microscopy HRTEM. Nano-sized carbides were found at the interface aluminum-graphene. The formation of a chemical bond between aluminum and graphene during annealing was proved. Lower values of the microhardness and strength characteristics of the composites after extrusion and subsequent annealing during which nano-sized carbides are formed were found in comparison with those obtained after extrusion. It could be supposed that the annealing processes contribute more to the reduction in microhardness and strength characteristics than nano-sized carbides contribute to its increase. The presence of a strong chemical bond between the graphene and the aluminum is manifested in the failure pattern, which is characterized by graphene nano-platelets and nano-sized carbides fracture and semi-pulled out or semi-slipped Al4C3 from the matrix

    High-Performance Layered Oxides for Sodium-Ion Batteries Achieved through Combined Aluminum Substitution and Surface Treatment

    No full text
    Layered sodium transition metal oxides belong to electrode materials for sodium-ion batteries that combine, in a better way, high performance with environmental requirements. However, their cycling stability is still far from desirable. Herein, we demonstrate a rational approach to control the cycling stability of sodium-deficient nickel manganese oxides, Na2/3Ni1/2Mn1/2O2, with two- and three-layer stacking through Al substitution and Al2O3 treatment. Layered Na2/3Ni1/2Mn1/2O2 oxide displays a limited ability to accommodate aluminum in its structure (i.e., up to 8 at. %). The substitution of Ni ions with electrochemically inactive Al3+ ions and keeping the amount of Mn ions in Na2/3Ni1/2−xAlxMn1/2O2 leads to the stabilization of the two-layer stacking and favors the participation of lattice oxygen in the electrochemical reaction in addition to Ni ions. This results in an increase in the specific capacity of the Al-substituted oxides. Furthermore, the kinetics of the cationic migration between layers occurring during oxide cycling was manipulated by oxide morphology. The best cycling stability is observed for Na2/3Ni0.42Al0.08Mn1/2O2 having a column-like morphology of stacked plate-like particles along the common faces. The treatment of the layered oxides with Al2O3 mitigates the Mn dissolution reaction during electrode cycling in the NaPF6-based electrolyte, thus contributing to a high cycling stability

    Structural insights into M2O–Al2O3–WO3 (M = Na, K) system by electron diffraction tomography

    No full text
    The M 2O-Al2O3-WO3 (M = alkaline metals) system has attracted the attention of the scientific community because some of its members showed potential applications as single crystalline media for tunable solid-state lasers. These materials behave as promising laser host materials due to their high and continuous transparency in the wide range of the near-IR region. A systematic investigation of these phases is nonetheless hampered because it is impossible to produce large crystals and only in a few cases a pure synthetic product can be achieved. Despite substantial advances in X-ray powder diffraction methods, structure investigation on nanoscale is still challenging, especially when the sample is polycrystalline and the structures are affected by pseudo-symmetry. Electron diffraction has the advantage of collecting data from single nanoscopic crystals, but it is frequently limited by incompleteness and dynamical effects. Automated diffraction tomography (ADT) recently emerged as an alternative approach able to collect more complete three-dimensional electron diffraction data and at the same time to significantly reduce dynamical scattering. ADT data have been shown to be suitable for ab initio structure solution of phases with large cell parameters, and for detecting pseudo-symmetry that was undetected in X-ray powder data. In this work we present the structure investigation of two hitherto undetermined compounds, K5Al(W3O11)2 and NaAl(WO4)2, by a combination of electron diffraction tomography and precession electron diffraction. We also stress how electron diffraction tomography can be used to obtain direct information about symmetry and pseudo-symmetry for nanocrystalline phases, even when available only in polyphasic mixtures. © 2015 International Union of Crystallography

    Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3)

    No full text
    In this contribution, new data on the reversible Li+ intercalation in iron substituted sodium manganates are provided. Novel Na2/3Mn1−yFeyO2 (y = 0, 1/3 and 2/3) compounds with a P′3-type structure are prepared from freeze-dried citrate precursors at 500 °C. A new structural element is the development of three-layer oxygen stacking contrary to the well-known P2-type Na2/3MnO2 with a two-layer sequence. The effect of Fe additives on the structure of Na2/3MnO2 was examined by XRD powder diffraction and TEM analysis. The oxidation state and the distribution of transition metal ions in Na2/3Mn1−yFeyO2 were analysed using electron paramagnetic resonance spectroscopy. The lithium intercalation in Na2/3Mn1−yFeyO2 was investigated in two-electrode lithium cells of the type Li|LiPF6 (EC:DMC)|Na2/3Mn1−yFeyO2. The stability of the layered phases during lithium intercalation was studied by ex situ Raman spectroscopy. It was found that the intermediate Na2/3Mn2/3Fe1/3O2 composition is able to intercalate Li+ reversibly in high amounts. Details of the structure and its stability during the Li+ intercalation are discussed

    Layered <i>P</i>3‑Na<sub><i>x</i></sub>Co<sub>1/3</sub>Ni<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> versus Spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> as a Positive and a Negative Electrode in a Full Sodium–Lithium Cell

    No full text
    The development of lithium and sodium ion batteries without using lithium and sodium metal as anodes gives the impetus for elaboration of low-cost and environmentally friendly energy storage devices. In this contribution we demonstrate the design and construction of a new type of hybrid sodium–lithium ion cell by using unique electrode combination (Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> spinel as a negative electrode and layered Na<sub>3/4</sub>Co<sub>1/3</sub>Ni<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> as a positive electrode) and conventional lithium electrolyte (LiPF<sub>6</sub> salt dissolved in EC/DMC). The cell operates at an average potential of 2.35 V by delivering a reversible capacity of about 100 mAh/g. The mechanism of the electrochemical reaction in the full sodium–lithium ion cell is studied by means of postmortem analysis, as well as <i>ex situ</i> X-ray diffraction analysis, HR-TEM, and electron paramagnetic resonance spectroscopy (EPR). The changes in the surface composition of electrodes are examined by <i>ex situ</i> X-ray photoelectron spectroscopy (XPS)
    corecore