289 research outputs found

    On the Explosion Mechanism of SNe Type Ia

    Get PDF
    In this article we discuss the first simulations of two- and three-dimensional Type Ia supernovae with an improved hydrodynamics code. After describing the various enhancements, the obtained results are compared to those of earlier code versions, observational data and the findings of other researchers in this field.Comment: 7 pages, 4 figure

    On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae

    Full text link
    The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Colloquium 192, "Supernovae (10 years of SN1993J)", 22-26 April 2003, Valencia, Spain, Eds. J.M. Marcaide and K.W. Weiler, Springer Verla

    Three-dimensional simulations of type Ia supernovae

    Get PDF
    We present the results of three-dimensional hydrodynamical simulations of the subsonic thermonuclear burning phase in type Ia supernovae. The burning front model contains no adjustable parameters so that variations of the explosion outcome can be linked directly to changes in the initial conditions. In particular, we investigate the influence of the initial flame geometry on the explosion energy and find that it appears to be weaker than in 2D. Most importantly, our models predict global properties such as the produced nickel masses and ejecta velocities within their observed ranges without any fine tuning.Comment: 7 pages, 5 figures, accepted by A&

    A note on inflation and transplanckian physics

    Get PDF
    In this paper we consider the influence of transplanckian physics on the CMBR anisotropies produced by inflation. We consider a simple toy model that allows for analytic calculations and argue on general grounds, based on ambiguities in the choice of vacuum, that effects are expected with a magnitude of the order of H/ΛH/\Lambda, where HH is the Hubble constant during inflation and Λ\Lambda the scale for new physics, e.g. the Planck scale.Comment: 12 pages. v2: typos corrected and references added. v3: final version accepted for publication by PRD. Improved discussion of adiabatic vacuu

    Bounds on the cosmological abundance of primordial black holes from diffuse sky brightness: single mass spectra

    Get PDF
    We constrain the mass abundance of unclustered primordial black holes (PBHs), formed with a simple mass distribution and subject to the Hawking evaporation and particle absorption from the environment. Since the radiative flux is proportional to the numerical density, an upper bound is obtained by comparing the calculated and observed diffuse background values, (similarly to the Olbers paradox in which point sources are considered) for finite bandwidths. For a significative range of formation redshifts the bounds are better than several values obtained by other arguments Ωpbh≀10−10\Omega_{pbh} \leq 10^{-10}; and they apply to PBHs which are evaporating today.Comment: 20 pages, 5 figures, to appear in PR

    Ultraviolet cut off and Bosonic Dominance

    Full text link
    We rederive the thermodynamical properties of a non interacting gas in the presence of a minimal uncertainty in length. Apart from the phase space measure which is modified due to a change of the Heisenberg uncertainty relations, the presence of an ultraviolet cut-off plays a tremendous role. The theory admits an intrinsic temperature above which the fermion contribution to energy density, pressure and entropy is negligible.Comment: 12 pages in revtex, 2 figures. Some coefficients have been changed in the A_2 model and two references adde

    The Corley-Jacobson dispersion relation and trans-Planckian inflation

    Get PDF
    In this Letter we study the dependence of the spectrum of fluctuations in inflationary cosmology on possible effects of trans-Planckian physics, using the Corley/Jacobson dispersion relations as an example. We compare the methods used in previous work [1] with the WKB approximation, give a new exact analytical result, and study the dependence of the spectrum obtained using the approximate method of Ref. [1] on the choice of the matching time between different time intervals. We also comment on recent work subsequent to Ref. [1] on the trans-Planckian problem for inflationary cosmology.Comment: 6 pages, Revtex

    Ultraviolet cut off, black hole-radiation equilibrium and big bang

    Full text link
    In the presence of a minimal uncertainty in length, there exists a critical temperature above which the thermodynamics of a gas of radiation changes drastically. We find that the equilibrium temperature of a system composed of a Schwarzschild black hole surrounded by radiation is unaffected by these modifications. This is in agreement with works related to the robustness of the Hawking evaporation. The only change the deformation introduces concerns the critical volume at which the system ceases to be stable. On the contrary, the evolution of the very early universe is sensitive to the new behavior. We readdress the shortcomings of the standard big bang model(flatness, entropy and horizon problems) in this context, assuming a minimal coupling to general relativity. Although they are not solved, some qualitative differences set in.Comment: 10 pages revtex, 1 figur

    Primordial black hole production due to preheating

    Get PDF
    During the preheating process at the end of inflation the amplification of field fluctuations can lead to the amplification of curvature perturbations. If the curvature perturbations on small scales are sufficiently large, primordial black holes (PBHs) will be overproduced. In this paper we study PBH production in the two-field preheating model with quadratic inflaton potential. We show that for many values of the inflaton mass m, and coupling g, small scale perturbations will be amplified sufficiently, before backreaction can shut off preheating, so that PBHs will be overproduced during the subsequent radiation dominated era.Comment: 5 pages, 3 eps figures. Minor changes to match version to appear in PRD as a rapid communicatio

    Dynamics of Primordial Black Hole Formation

    Get PDF
    We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to primordial black holes (PBHs) during the radiation-dominated phase of the Early Universe. The collapse dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological PBH mass function, is found to be ήc≈0.7\delta_{\rm c} \approx 0.7 rather than the generally employed ήc≈1/3\delta_{\rm c} \approx 1/3, if ή\delta is defined as \Delta M/\mh, the relative excess mass within the initial horizon volume. In order to study the accretion onto the newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times after formation of the event horizon. In general, small black holes (compared to the horizon mass at the onset of the collapse) give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore, the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, is demonstrated to apply to primordial black hole formation.Comment: 10 pages, 8 figures, revtex style, submitted to PR
    • 

    corecore