1,205 research outputs found

    Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content

    Get PDF
    The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N=20) participated in a 75-km cycling time trial (168±26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2±17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5±2.8-, 45.3±7.8-, and 8.25±1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5±14.1%, 347±68.1%, and 148±21.3%, respectively (all, P<0.001). Serum myoglobin and cortisol increased 32.1±3.3 to 242±48.3 mg/mL, and 295±27.6 to 784±63.5 nmol/L, respectively (both P<0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42±0.07 to 18.5±3.8, 4.07±0.37 to 17.0±1.8, and 96.5±3.7 to 240±21.6 pg/mL, respectively (all P<0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r=0.462, P=0.040), with change in myoglobin related to plasma IL-8 (r=0.582, P=0.007) and plasma MCP-1 (r=0.457, P=0.043), and muscle MCP-1 protein (r=0.588, P=0.017); cortisol was related to plasma IL-8 (r=0.613, P=0.004), muscle IL-8 protein (r=0.681, P=0.004), and plasma MCP-1 (r=0.442, P=0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1

    Bananas as an Energy Source during Exercise: A Metabolomics Approach

    Get PDF
    This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways

    Vanadium (β-(Dimethylamino)ethyl)cyclopentadienyl Complexes with Diphenylacetylene Ligands

    Get PDF
    Reduction of the V(III) (β-(dimethylamino)ethyl)cyclopentadienyl dichloride complex [η5:η1-C5H4(CH2)2NMe2]VCl2(PMe3) with 1 equiv of Na/Hg yielded the V(II) dimer {[η5:η1-C5H4(CH2)2NMe2]V(µ-Cl)}2 (2). This compound reacted with diphenylacetylene in THF to give the V(II) alkyne adduct [η5:η1-C5H4(CH2)2NMe2]VCl(η2-PhC≡CPh). Further reduction of 2 with Mg in the presence of diphenylacetylene resulted in oxidative coupling of two diphenylacetylene groups to yield the diamagnetic, formally V(V), bent metallacyclopentatriene complex [η5:η1-C5H4(CH2)2NMe2]V(C4Ph4).

    The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    Get PDF
    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index

    Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment

    Get PDF
    Background Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival. Methods/design Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored. Discussion This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives

    Original Research Oral Quercetin Supplementation and Blood Oxidative Capacity in Response to Ultramarathon Competition

    Get PDF
    Previous research indicates that ultramarathon exercise can result in blood oxidative stress. The purpose of this investigation was to examine the efficacy of oral supplementation with quercetin, a naturally occurring compound with known antioxidant properties, as a potential countermeasure against blood oxidative stress during an ultramarathon competition. In double-blind fashion, 63 participants received either oral quercetin (250 mg, 4×/day; 1,000 mg/day total) or quercetin-free supplements 3 weeks before and during the 160-km Western States Endurance Run. Blood drawn before and immediately after (quercetin finishers n = 18, quercetin-free finishers n = 21) the event was analyzed for changes in blood redox status and oxidative damage. Results show that quercetin supplementation did not affect race performance. In response to the ultramarathon challenge, aqueous-phase antioxidant capacity (ferric-reducing ability of plasma) was similarly elevated in athletes in both quercetin and quercetin-free treatments and likely reflects significant increases in plasma urate levels. Alternatively, trolox-equivalent antioxidant capacity was not altered by exercise or quercetin. Accordingly, neither F2-isoprostances nor protein carbonyls were influenced by either exercise or quercetin supplementation. In the absence of postrace blood oxidative damage, these findings suggest that oral quercetin supplementation does not alter blood plasma lipid or aqueous-phase antioxidant capacity or oxidative damage during an ultramarathon challenge

    Successive Bouts of Cycling Stimulates Genes Associated with Mitochondrial Biogenesis

    Get PDF
    Exercise increases mRNA for genes involved in mitochondrial biogenesis and oxidative enzyme capacity. However, little is known about how these genes respond to consecutive bouts of prolonged exercise. We examined the effects of 3 h of intensive cycling performed on three consecutive days on the mRNA associated with mitochondrial biogenesis in trained human subjects. Forty trained cyclists were tested for VO2max (54.7 ± 1.1 ml kg−1 min−1). The subjects cycled at 57% wattsmax for 3 h using their own bicycles on CompuTrainer™ Pro Model trainers (RacerMate, Seattle, WA) on three consecutive days. Muscle biopsies were obtained from the vastus lateralis pre- and post-exercise on days one and three. Muscle samples were analyzed for mRNA content of peroxisome proliferator receptor gamma coactivator-1 alpha (PGC-1α), sirtuin 1 (Sirt-1), cytochrome c, and citrate synthase. Data were analyzed using a 2 (time) × 2 (day) repeated measures ANOVA. Of the mRNA analyzed, the following increased from pre to post 3 h rides: cytochrome c (P = 0.006), citrate synthase (P = 0.03), PGC-1α (P \u3c 0.001), and Sirt-1 (P = 0.005). The following mRNA showed significant effects from days one to three: cytochrome c (P \u3c 0.001) and citrate synthase (P = 0.01). These data show that exhaustive cycling performed on three consecutive days resulted in both acute and chronic stimuli for mRNA associated with mitochondrial biogenesis in already trained subjects. This is the first study to illustrate an increase in sirtuin-1 mRNA with acute and chronic exercise. These data contribute to the understanding of mRNA expression during both acute and successive bouts of prolonged exercise

    Quercetin Ingestion Does Not Alter Cytokine Changes in Athletes Competing in the Western States Endurance Run

    Get PDF
    The purpose of this study was to measure the influence of quercetin on plasma cytokines, leukocyte cytokine mRNA, and related variables in ultramarathoners competing in the 160-km Western States Endurance Run (WSER). Sixty-three runners were randomized to quercetin and placebo groups and under double-blinded methods ingested 1000 mg/day quercetin for 3 weeks before the WSER. Thirty-nine of the 63 subjects (n = 18 for quercetin, n = 21 for placebo) finished the race and provided blood samples the morning before the race and 15–30 min postrace. Significant prerace to postrace WSER increases were measured for nine proinflammatory and anti-inflammatory plasma cytokines, cortisol (quercetin = 94%, placebo = 96%), serum C-reactive protein (CRP) (mean ± SE absolute increase, quercetin = 31.8 ± 4.2, placebo = 38.2 ± 5.0 mg/L), and creatine kinase (CK) (quercetin = 21,575 ± 3,977, placebo = 19,455 ± 3,969 U/L), with no significant group differences. Interleukin-6 (IL-6) mRNA did not change post-WSER, with a significant decrease measured for leukocyte IL-8 mRNA (0.21 ± 0.03-fold and 0.25 ± 0.04-fold change from rest, quercetin and placebo, respectively) and significant increases for IL-1Ra mRNA (1.43 ± 0.18-fold and 1.40 ± 0.16-fold change, quercetin and placebo, respectively) and IL-10 mRNA (12.9 ± 3.9-fold and 17.2 ± 6.1-fold change, quercetin and placebo, respectively), with no significant differences between groups. In conclusion, quercetin ingestion (1 g/day) by ultramarathon athletes for 3 weeks before a competitive 160-km race significantly increased plasma quercetin levels but failed to attenuate muscle damage, inflammation, increases in plasma cytokine and hormone levels, and alterations in leukocyte cytokine mRNA expression

    A new approach to the assessment of lumen visibility of coronary artery stent at various heart rates using 64-slice MDCT

    Get PDF
    Coronary artery stent lumen visibility was assessed as a function of cardiac movement and temporal resolution with an automated objective method using an anthropomorphic moving heart phantom. Nine different coronary stents filled with contrast fluid and surrounded by fat were scanned using 64-slice multi-detector computed tomography (MDCT) at 50–100 beats/min with the moving heart phantom. Image quality was assessed by measuring in-stent CT attenuation and by a dedicated tool in the longitudinal and axial plane. Images were scored by CT attenuation and lumen visibility and compared with theoretical scoring to analyse the effect of multi-segment reconstruction (MSR). An average increase in CT attenuation of 144 ± 59 HU and average diminished lumen visibility of 29 ± 12% was observed at higher heart rates in both planes. A negative correlation between image quality and heart rate was non-significant for the majority of measurements (P > 0.06). No improvement of image quality was observed in using MSR. In conclusion, in-stent CT attenuation increases and lumen visibility decreases at increasing heart rate. Results obtained with the automated tool show similar behaviour compared with attenuation measurements. Cardiac movement during data acquisition causes approximately twice as much blurring compared with the influence of temporal resolution on image quality
    corecore