256 research outputs found
Candidate gene analysis of spontaneous preterm delivery: New insights from re-analysis of a case-control study using case-parent triads and control-mother dyads
<p>Abstract</p> <p>Background</p> <p>Spontaneous preterm delivery (PTD) has a multifactorial etiology with evidence of a genetic contribution to its pathogenesis. A number of candidate gene case-control studies have been performed on spontaneous PTD, but the results have been inconsistent, and do not fully assess the role of how two genotypes can impact outcome. To elucidate this latter point we re-analyzed data from a previously published case-control candidate gene study, using a case-parent triad design and a hybrid design combining case-parent triads and control-mother dyads. These methods offer a robust approach to genetic association studies for PTD compared to traditional case-control designs.</p> <p>Methods</p> <p>The study participants were obtained from the Norwegian Mother and Child Cohort Study (MoBa). A total of 196 case triads and 211 control dyads were selected for the analysis. A case-parent triad design as well as a hybrid design was used to analyze 1,326 SNPs from 159 candidate genes. We compared our results to those from a previous case-control study on the same samples. Haplotypes were analyzed using a sliding window of three SNPs and a pathway analysis was performed to gain biological insight into the pathophysiology of preterm delivery.</p> <p>Results</p> <p>The most consistent significant fetal gene across all analyses was COL5A2. The functionally similar COL5A1 was significant when combining fetal and maternal genotypes. PON1 was significant with analytical approaches for single locus association of fetal genes alone, but was possibly confounded by maternal effects. Focal adhesion (hsa04510), Cell Communication (hsa01430) and ECM receptor interaction (hsa04512) were the most constant significant pathways.</p> <p>Conclusion</p> <p>This study suggests a fetal association of COL5A2 and a combined fetal-maternal association of COL5A1 with spontaneous PTD. In addition, the pathway analysis implied interactions of genes affecting cell communication and extracellular matrix.</p
Modelling a response as a function of high frequency count data: the association between physical activity and fat mass
We present a new statistical modelling approach where the response is a
function of high frequency count data. Our application is about investigating
the relationship between the health outcome fat mass and physical activity (PA)
measured by accelerometer. The accelerometer quantifies the intensity of
physical activity as counts per epoch over a given period of time. We use data
from the Avon longitudinal study of parents and children (ALSPAC) where
accelerometer data is available as a time series of accelerometer counts per
minute over seven days for a subset of children. In order to compare
accelerometer profiles between individuals and to reduce the high dimension a
functional summary of the profiles is used. We use the histogram as a
functional summary due to its simplicity, suitability and ease of
interpretation. Our model is an extension of generalised regression of scalars
on functions or signal regression. It allows also multi-dimensional functional
predictors and additive non-linear predictors for metric covariates. The
additive multidimensional functional predictors allow investigating specific
questions about whether the effect of PA varies over its intensity, by gender,
by time of day or by day of the week. The key feature of the model is that it
utilises the full profile of measured PA without requiring cut-points defining
intensity levels for light, moderate and vigorous activity. We show that the
(not necessarily causal) effect of PA is not linear and not constant over the
activity intensity. Also, there is little evidence to suggest that the effect
of PA intensity varies by gender or whether it happens on weekdays or on
weekends
Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus)
Across an individual\u27s life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500–1600 m•h−1) and a reduction in postdive duration (111–90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (<2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (>2.9 d) effort increased up to 2–3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4–5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this specie
A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology
Over time, methods for the development of clinical decision support (CDS) systems have evolved from interpretable and easy-to-use scoring systems to very complex and non-interpretable mathematical models. In order to accomplish effective decision support, CDS systems should provide information on how the model arrives at a certain decision. To address the issue of incompatibility between performance, interpretability and applicability of CDS systems, this paper proposes an innovative model structure, automatically leading to interpretable and easily applicable models. The resulting models can be used to guide clinicians when deciding upon the appropriate treatment, estimating patient-specific risks and to improve communication with patients.We propose the interval coded scoring (ICS) system, which imposes that the effect of each variable on the estimated risk is constant within consecutive intervals. The number and position of the intervals are automatically obtained by solving an optimization problem, which additionally performs variable selection. The resulting model can be visualised by means of appealing scoring tables and color bars. ICS models can be used within software packages, in smartphone applications, or on paper, which is particularly useful for bedside medicine and home-monitoring. The ICS approach is illustrated on two gynecological problems: diagnosis of malignancy of ovarian tumors using a dataset containing 3,511 patients, and prediction of first trimester viability of pregnancies using a dataset of 1,435 women. Comparison of the performance of the ICS approach with a range of prediction models proposed in the literature illustrates the ability of ICS to combine optimal performance with the interpretability of simple scoring systems.The ICS approach can improve patient-clinician communication and will provide additional insights in the importance and influence of available variables. Future challenges include extensions of the proposed methodology towards automated detection of interaction effects, multi-class decision support systems, prognosis and high-dimensional data
Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress
Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H2O2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD
Inducing Ni Sensitivity in the Ni Hyperaccumulator Plant Alyssum inflatum Nyárády (Brassicaceae) by Transforming with CAX1, a Vacuolar Membrane Calcium Transporter
The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were subcultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0– 500 lM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 lM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants
A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia
<p>Abstract</p> <p>Background</p> <p>The length of the gonotrophic cycle varies the vectorial capacity of a mosquito vector and therefore its exact estimation is important in epidemiological modelling. Because the gonotrophic cycle length depends on temperature, its estimation can be satisfactorily computed by means of physiological time analysis.</p> <p>Methods</p> <p>A model of physiological time was developed and calibrated for <it>Anopheles pseudopunctipennis</it>, one of the main malaria vectors in South America, using data from laboratory temperature controlled experiments. The model was validated under varying temperatures and could predict the time elapsed from blood engorgement to oviposition according to the temperature.</p> <p>Results</p> <p>In laboratory experiments, a batch of <it>An. pseudopunctipennis </it>fed at the same time may lay eggs during several consecutive nights (2–3 at high temperature and > 10 at low temperature). The model took into account such pattern and was used to predict the range of the gonotrophic cycle duration of <it>An. pseudopunctipennis </it>in four characteristic sites of Bolivia. It showed that the predicted cycle duration for <it>An. pseudopunctipennis </it>exhibited a seasonal pattern, with higher variances where climatic conditions were less stable. Predicted mean values of the (minimum) duration ranged from 3.3 days up to > 10 days, depending on the season and the geographical location. The analysis of ovaries development stages of field collected biting mosquitoes indicated that the phase 1 of Beklemishev might be of significant duration for <it>An. pseudopunctipennis</it>. The gonotrophic cycle length of <it>An. pseudopunctipennis </it>correlates with malaria transmission patterns observed in Bolivia which depend on locations and seasons.</p> <p>Conclusion</p> <p>A new presentation of cycle length results taking into account the number of ovipositing nights and the proportion of mosquitoes laying eggs is suggested. The present approach using physiological time analysis might serve as an outline to other similar studies and allows the inclusion of temperature effects on the gonotrophic cycle in transmission models. However, to better explore the effects of temperature on malaria transmission, the others parameters of the vectorial capacity should be included in the analysis and modelled accordingly.</p
Beyond the public and private divide: Remapping transnational climate governance in de 21th century
This article provides a first step towards a better theoretical and empirical knowledge of the emerging arena of transnational climate governance. The need for such a re-conceptualization emerges from the increasing relevance of non-state and transnational approaches towards climate change mitigation at a time when the intergovernmental negotiation process has to overcome substantial stalemate and the international arena becomes increasingly fragmented. Based on a brief discussion of the increasing trend towards transnationalization and functional segmentation of the global climate governance arena, we argue that a remapping of climate governance is necessary and needs to take into account different spheres of authority beyond the public and international. Hence, we provide a brief analysis of how the public/private divide has been conceptualized in Political Science and International Relations. Subsequently, we analyse the emerging transnational climate governance arena. Analytically, we distinguish between different manifestations of transnational climate governance on a continuum ranging from delegated and shared public-private authority to fully non-state and private responses to the climate problem. We suggest that our remapping exercise presented in this article can be a useful starting point for future research on the role and relevance of transnational approaches to the global climate crisis
Multiple Chronic Conditions: Prevalence, Health Consequences, and Implications for Quality, Care Management, and Costs
Persons with multiple chronic conditions are a large and growing segment of the US population. However, little is known about how chronic conditions cluster, and the ramifications of having specific combinations of chronic conditions. Clinical guidelines and disease management programs focus on single conditions, and clinical research often excludes persons with multiple chronic conditions. Understanding how conditions in combination impact the burden of disease and the costs and quality of care received is critical to improving care for the 1 in 5 Americans with multiple chronic conditions. This Medline review of publications examining somatic chronic conditions co-occurring with 1 or more additional specific chronic illness between January 2000 and March 2007 summarizes the state of our understanding of the prevalence and health challenges of multiple chronic conditions and the implications for quality, care management, and costs
- …