3,769 research outputs found

    Studies of Heavily Ionizing Particles and Space Biology Semiannual Report

    Get PDF
    Radiobiological and radiation medical studies on biological cel

    Biology and Medicine, Spring 1965 Semiannual report

    Get PDF
    Reports on radiobiology studies, pion studies with silicon detectors, immunology, ultracentrifuge rotor temperature and speed measurement by radio telemetry, and radiosensitivity investigation

    Phase space shifts in command structures in networked systems

    No full text
    This paper presents the rationale behind an important enhancement to the NATO SAS-050 approach space, combined with empirical results which take advantage of these enhancements. In Part 1 a new theoretical legacy for the NATO model is presented. This legacy inspires a number of developments which allow live data to be plotted into it, and we demonstrate that the model is well able to discriminate between alternative C2 structures. Part 2 illustrates this feature with multinational data from the ELICIT community. It is surprising to see that teams in both C2 and Edge conditions operate in broadly the same area of the phase space cube. The structure of the pre-ordained ELICIT ‘classic C2’ hierarchy and the deterministic nature of the shared task are put forward as explanations for this, and as future enhancements to the ELICIT paradigm

    Biology and Medicine, Fall 1965 Semiannual report

    Get PDF
    Reports on radiation medicine, radiobiology, EPR STUDIES of OH radicals in ice, radiation doses on manned space missions, silicon detectors, and recovery of yeast after irradiatio

    Energy and directional signatures for plane quantized gravity waves

    Get PDF
    Solutions are constructed to the quantum constraints for planar gravity (fields dependent on z and t only) in the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solutions. These include the familiar ADM energy and area operators, as well as new operators sensitive to directionality (z+ct vs. z-ct dependence). The directionality operators are quantum analogs of the classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson (BPR). It is argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are semiclassical in a certain sense. The ADM energy and area operators are likely to have imaginary eigenvalues, unless one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this collapse.Comment: 54 pages; LaTe

    Local Ferroelectricity in SrTiO_3 Thin Films

    Full text link
    The temperature-dependent polarization of SrTiO_3 thin films is investigated using confocal scanning optical microscopy. A homogeneous out-of-plane and inhomogeneous in-plane ferroelectric phase are identified from images of the linear electrooptic response. Both hysteretic and non-hysteretic behavior are observed under a dc bias field. Unlike classical transitions in bulk ferroelectrics, local ferroelectricity is observed at temperatures far above the dielectric permittivity maximum. The results demonstrate the utility of local probe experiments in understanding inhomogeneous ferroelectrics.Comment: 8 pages, 3 figures, accepted for publication in PR

    Plane waves in quantum gravity: breakdown of the classical spacetime

    Get PDF
    Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and creation like variables. We also consider a simplified version of the model, in which the number of modes is restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to admit an approximate classical description. This result applies as well to the vacuum of the theory.Comment: 11 pages, no figures, version accepted for publication in Phys. Rev.

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure

    a general framework for shared control in robot teleoperation with force and visual feedback

    Get PDF
    In the last decade, the topic of human robot interaction has received increasing interest from research and industry, as robots must now interface with human users to accomplish complex tasks. In this scenario, robotics engineers are required to take the human component into account in the robot design and control. This is especially true in telerobotics, where interaction with the user plays an important role in the controlled system stability. By means of a thorough analysis and practical experiments, this contribution aims at giving a concrete idea of the aspects that need to be considered in the design of a complete control framework for teleoperated systems, that are able to seamlessly integrate with a human operator through shared control

    Localization of human breast-carcinoma xenografts using antibodies to carcinoembryonic antigen.

    Get PDF
    Affinity-purified antibodies to carcinoembryonic antigen (CEA) have been injected into immune-suppressed mice bearing xenografts of human breast tumours. It has been shown that the antibodies localized in the tumours but not in normal tissues. The degree of tumour localization correlates with the amount of tumour CEA, and is unaffected by levels of circulating CEA or CEA/anti-CEA immune complexes
    corecore