18,974 research outputs found

    Laser-velocimeter flow-field measurements of an advanced turboprop

    Get PDF
    Non-intrusive measurements of velocity about a spinner-propeller-nacelle configuration at a Mach number of 0.8 were performed. A laser velocimeter, specifically developed for these measurements in the NASA Lewis 8-foot by 6-foot Supersonic Wind Tunnel, was used to measure the flow-field of the advanced swept SR-3 turboprop. The laser velocimeter uses an argon ion laser and a 2-color optics system to allow simultaneous measurements of 2-components of velocity. The axisymmetric nature of the propeller-nacelle flow-field permits two separate 2 dimensonal measurements to be combined into 3 dimensional velocity data. Presented are data ahead of and behind the prop blades and also a limited set in between the blades. Aspects of the observed flow-field such as the tip vortex are discussed

    Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3.

    No full text
    Translation termination requires eRF1 and eRF3 for polypeptide-and tRNA-release on stop codons. Additionally, Dbp5/DDX19 and Rli1/ABCE1 are required; however, their function in this process is currently unknown. Using a combination of in vivo and in vitro experiments, we show that they regulate a stepwise assembly of the termination complex. Rli1 and eRF3-GDP associate with the ribosome first. Subsequently, Dbp5-ATP delivers eRF1 to the stop codon and in this way prevents a premature access of eRF3. Dbp5 dissociates upon placing eRF1 through ATP-hydrolysis. This in turn enables eRF1 to contact eRF3, as the binding of Dbp5 and eRF3 to eRF1 is mutually exclusive. Defects in the Dbp5-guided eRF1 delivery lead to premature contact and premature dissociation of eRF1 and eRF3 from the ribosome and to subsequent stop codon readthrough. Thus, the stepwise Dbp5-controlled termination complex assembly is essential for regular translation termination events. Our data furthermore suggest a possible role of Dbp5/DDX19 in alternative translation termination events, such as during stress response or in developmental processes, which classifies the helicase as a potential drug target for nonsense suppression therapy to treat cancer and neurodegenerative diseases

    Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study

    Get PDF
    Combining conservation of energy throughout nearly-spherical collapse of galaxy clusters with the virial theorem, we derive the mass-temperature relation for X-ray clusters of galaxies T=CM2/3T=CM^{2/3}. The normalization factor CC and the scatter of the relation are determined from first principles with the additional assumption of initial Gaussian random field. We are also able to reproduce the recently observed break in the M-T relation at T \sim 3 \keV, based on the scatter in the underlying density field for a low density Λ\LambdaCDM cosmology. Finally, by combining observational data of high redshift clusters with our theoretical formalism, we find a semi-empirical temperature-mass relation which is expected to hold at redshifts up to unity with less than 20% error.Comment: 43 pages, 13 figures, One figure is added and minor changes are made. Accepted for Publication in Ap

    Evaluation of Bacillus thuringiensis Berliner as an alternative control of small hive beetles, Aethina tumida Murray (Coleoptera: Nitidulidae)

    Get PDF
    Small hive beetles, Aethina tumida Murray, are parasites and scavengers of honeybee colonies, Apis mellifera L., and have become an invasive species that can cause considerable damage in its new distribution areas. An effective subspecies of Bacillus thuringiensis Berliner (=Bt) would provide an alternative to chemical control of this pest. Therefore, we tested three different Bt strains [B. thuringiensis, var. aizawai (B401®), B. thuringiensis var. kurstaki (Novodor®) and B. thuringiensis var. San Diego tenebrionis (Jackpot®)] and Perizin® (3.2% coumaphos), each applied on combs with a pollen diet fed to pairs of adult beetles. This evaluates the products for the suppression of successful small hive beetle reproduction. While none of the tested Bt strains showed a significant effect on the number of produced wandering larvae, we could confirm the efficacy of coumaphos for the control of small hive beetles. We further show that it is also efficient when applied with a lower concentration as a liquid on the combs. We suggest the continued search for efficient Bt strains naturally infesting small hive beetles in its endemic and new ranges, which may become a part of the integrated management of this pest

    Learning to Reason with Adaptive Computation

    Get PDF
    Multi-hop inference is necessary for machine learning systems to successfully solve tasks such as Recognising Textual Entailment and Machine Reading. In this work, we demonstrate the effectiveness of adaptive computation for learning the number of inference steps required for examples of different complexity and that learning the correct number of inference steps is difficult. We introduce the first model involving Adaptive Computation Time which provides a small performance benefit on top of a similar model without an adaptive component as well as enabling considerable insight into the reasoning process of the model

    FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions

    No full text
    In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo

    Quantum State Tomography Using Successive Measurements

    Full text link
    We describe a quantum state tomography scheme which is applicable to a system described in a Hilbert space of arbitrary finite dimensionality and is constructed from sequences of two measurements. The scheme consists of measuring the various pairs of projectors onto two bases --which have no mutually orthogonal vectors--, the two members of each pair being measured in succession. We show that this scheme implies measuring the joint quasi-probability of any pair of non-degenerate observables having the two bases as their respective eigenbases. The model Hamiltonian underlying the scheme makes use of two meters initially prepared in an arbitrary given quantum state, following the ideas that were introduced by von Neumann in his theory of measurement.Comment: 12 Page

    Statistical mechanics of scale-free networks at a critical point: Complexity without irreversibility?

    Full text link
    Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes increase/decrease their utility by linking to nodes with a higher/lower degree than their own. We interpret utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging networks. We observe the existence of a critical temperature TcT_c where total energy (utility) and network-architecture undergo radical changes. Along this topological transition we obtain scale-free networks with complex hierarchical topology. In contrast to models for scale-free networks introduced so far, the scale-free nature emerges within equilibrium, with a clearly defined microcanonical ensemble and the principle of detailed balance strictly fulfilled. This provides clear evidence that 'complex' networks may arise without irreversibility. The results presented here should find a wide variety of applications in socio-economic statistical systems.Comment: 4 pages, 5 figure

    Quantum correlation games

    Get PDF
    A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games
    corecore