591 research outputs found
Ground state structure and interactions between dimeric 2D Wigner crystals
We study the ground state ordering and interactions between two
two-dimensional Wigner crystals on neutralizing charged plates by means of
computer simulation. We consider crystals formed by (i) point-like charges and
(ii) charged dimers, which mimic the screening of charged surfaces by elongated
multivalent ions such as aspherical globular proteins, charged dendrimers or
short stiff polyelectrolytes. Both systems, with point-like and dimeric ions,
display five distinct crystalline phases on increasing the interlayer distance.
In addition to alteration of translational ordering within the bilayer, the
phase transitions in the dimeric system are characterized by alteration of
orientational ordering of the ions.Comment: Revised versio
Statics and Dynamics of Strongly Charged Soft Matter
Soft matter materials, such as polymers, membranes, proteins, are often
electrically charged. This makes them water soluble, which is of great
importance in technological application and a prerequisite for biological
function. We discuss a few static and dynamic systems that are dominated by
charge effects. One class comprises complexation between oppositely charged
objects, for example the adsorption of charged ions or charged polymers (such
as DNA) on oppositely charged substrates of different geometry. The second
class comprises effective interactions between similarly charged objects. Here
the main theme is to understand the experimental finding that similarly and
highly charged bodies attract each other in the presence of multi-valent
counterions. This is demonstrated using field-theoretic arguments as well as
Monte-Carlo simulations for the case of two homogeneously charged bodies.
Realistic surfaces, on the other hand, are corrugated and also exhibit
modulated charge distributions, which is important for static properties such
as the counterion-density distribution, but has even more pronounced
consequences for dynamic properties such as the counterion mobility. More
pronounced dynamic effects are obtained with highly condensed charged systems
in strong electric fields. Likewise, an electrostatically collapsed highly
charged polymer is unfolded and oriented in strong electric fields. At the end
of this review, we give a very brief account of the behavior of water at planar
surfaces and demonstrate using ab-initio methods that specific interactions
between oppositely charged groups cause ion-specific effects that have recently
moved into the focus of interest.Comment: 61 pages, 31 figures, Physics Reports (2005)-in press (high quality
figures available from authors
Which mechanism underlies the water-like anomalies in core-softened potentials?
Using molecular dynamics simulations we investigate the thermodynamic of
particles interacting with a continuous and a discrete versions of a
core-softened (CS) intermolecular potential composed by a repulsive shoulder.
Dynamic and structural properties are also analyzed by the simulations. We show
that in the continuous version of the CS potential the density at constant
pressure has a maximum for a certain temperature. Similarly the diffusion
constant, , at a constant temperature has a maximum at a density
and a minimum at a density
, and structural properties are also
anomalous. For the discrete CS potential none of these anomalies are observed.
The absence of anomalies in the discrete case and its presence in the
continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page
Surface states in nearly modulated systems
A Landau model is used to study the phase behavior of the surface layer for
magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz
point marking the boundary between modulated and homogeneous bulk phases. The
model incorporates surface and bulk fields and includes a term in the free
energy proportional to the square of the second derivative of the order
parameter in addition to the usual term involving the square of the first
derivative. In the limit of vanishing bulk field, three distinct types of
surface ordering are possible: a wetting layer, a non-wet layer having a small
deviation from bulk order, and a different non-wet layer with a large deviation
from bulk order which decays non-monotonically as distance from the wall
increases. In particular the large deviation non-wet layer is a feature of
systems at the Lifshitz point and also those having only homogeneous bulk
phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Exact asymptotic expansions for the cylindrical Poisson-Boltzmann equation
The mathematical theory of integrable Painleve/Toda type systems sheds new
light on the behavior of solutions to the Poisson-Boltzmann equation for the
potential due to a long rod-like macroion. We investigate here the case of
symmetric electrolytes together with that of 1:2 and 2:1 salts. Short and large
scale features are analyzed, with a particular emphasis on the low salinity
regime. Analytical expansions are derived for several quantities relevant for
polyelectrolytes theory, such as the Manning radius. In addition, accurate and
practical expressions are worked out for the electrostatic potential, which
improve upon previous work and cover the full range of radial distances
Electrostatic colloid-membrane complexation
We investigate numerically and on the scaling level the adsorption of a
charged colloid on an oppositely charged flexible membrane. We show that the
long ranged character of the electrostatic interaction leads to a wrapping
reentrance of the complex as the salt concentration is varied. The membrane
wrapping depends on the size of the colloid and on the salt concentration and
only for intermediate salt concentration and colloid sizes we find full
wrapping. From the scaling model we derive simple relations for the phase
boundaries between the different states of the complex, which agree well with
the numerical minimization of the free energy.Comment: 7 page, 11 figure
Reentrant Melting of RNA with Quenched Sequence Randomness
The effect of quenched sequence disorder on the thermodynamics of RNA
secondary structure formation is investigated for two- and four-letter
alphabet models using the constrained annealing approach, from which the
temperature behavior of the free energy, specific heat, and helicity is
analytically obtained. For competing base pairing energies, the calculations
reveal reentrant melting at low temperatures, in excellent agreement with
numerical results. Our results suggest an additional mechanism for the
experimental phenomenon of RNA cold denaturation
Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders
We address the critical and universal aspects of counterion-condensation
transition at a single charged cylinder in both two and three spatial
dimensions using numerical and analytical methods. By introducing a novel
Monte-Carlo sampling method in logarithmic radial scale, we are able to
numerically simulate the critical limit of infinite system size (corresponding
to infinite-dilution limit) within tractable equilibration times. The critical
exponents are determined for the inverse moments of the counterionic density
profile (which play the role of the order parameters and represent the inverse
localization length of counterions) both within mean-field theory and within
Monte-Carlo simulations. In three dimensions (3D), correlation effects
(neglected within mean-field theory) lead to an excessive accumulation of
counterions near the charged cylinder below the critical temperature
(condensation phase), while surprisingly, the critical region exhibits
universal critical exponents in accord with the mean-field theory. In two
dimensions (2D), we demonstrate, using both numerical and analytical
approaches, that the mean-field theory becomes exact at all temperatures
(Manning parameters), when number of counterions tends to infinity. For finite
particle number, however, the 2D problem displays a series of peculiar singular
points (with diverging heat capacity), which reflect successive de-localization
events of individual counterions from the central cylinder. In both 2D and 3D,
the heat capacity shows a universal jump at the critical point, and the energy
develops a pronounced peak. The asymptotic behavior of the energy peak location
is used to locate the critical temperature, which is also found to be universal
and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure
A model of inversion of DNA charge by a positive polymer: fractionization of the polymer charge
Charge inversion of a DNA double helix by an oppositely charged flexible
polyelectrolyte (PE) is considered. We assume that, in the neutral state of the
DNA-PE complex, each of the DNA charges is locally compensated by a PE charge.
When an additional PE molecule is adsorbed by DNA, its charge gets fractionized
into monomer charges of defects (tails and arches) on the background of the
perfectly neutralized DNA. These charges spread all over the DNA eliminating
the self-energy of PE. This fractionization mechanism leads to a substantial
inversion of the DNA charge, a phenomenon which is widely used for gene
delivery.Comment: 4 pages, 2 figures. Improved figures and various corrections to tex
Self-Consistent Field study of Polyelectrolyte Brushes
We formulate a self-consistent field theory for polyelectrolyte brushes in
the presence of counterions. We numerically solve the self-consistent field
equations and study the monomer density profile, the distribution of
counterions, and the total charge distribution. We study the scaling relations
for the brush height and compare them to the prediction of other theories. We
find a weak dependence of the brush height on the grafting density.We fit the
counterion distribution outside the brush by the Gouy-Chapman solution for a
virtual charged wall. We calculate the amount of counterions outside the brush
and find that it saturates as the charge of the polyelectrolytes increases
- …
