2,408 research outputs found

    Efeito de fungicidas e inseticidas em sementes peletizadas de sorgo.

    Get PDF
    Edição dos resumos do 18º Congresso Brasileiro de Sementes, 2013, Florianópolis

    Model to predict shrinkage and ejection forces of injection moulded tubular parts of short glass fiber reinforced thermoplastics

    Get PDF
    This work presents a model to predict shrinkage and ejection forces for glass fiber reinforced thermoplastics of tubular geometry. This mathematical model was based in Jansen’s Model to predict shrinkage and residual stresses in fiber reinforced injection molded products and Pontes’s Model to predict ejection forces for tubular parts of pure PP. The model used the modified classical laminate theory applied to injection moulding and it uses the fiber orientation state, temperature and pressure field as input and which predicts the shrinkage and ejection forces. The fiber orientation state was determined experimentally and the temperature and pressure fields were obtained by MOLDFLOW simulations. The model to predict ejection forces considers also the fiber orientation state, friction coefficient between steel and polymer, elastic modulus of polymer, both in the ejection temperature and diametrical shrinkage. The model is validated by experimental results

    Matching fields of a long superconducting film

    Full text link
    We obtain the vortex configurations, the matching fields and the magnetization of a superconducting film with a finite cross section. The applied magnetic field is normal to this cross section, and we use London theory to calculate many of its properties, such as the local magnetic field, the free energy and the induction for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film, are recovered here, in the special limit of a very long cross section.Comment: Contains a REVTeX file and 4 figure

    Assessment of the shrinkage and ejection forces of reinforced polypropylene based on nanoclays and short glass fibre

    Get PDF
    In this study the influence of nanoclay and glass fibre in the shrinkage and ejection forces in polypropylene matrix in tubular parts moulded by injection moulding were analysed. An instrumented mould was used to measure the part surface temperature and ejection forces in tubular parts. The materials used were a polypropylene homopolymer Domolen 1100L nanoclay for polyolefin nanocomposites P-802 Nanomax in percentages of 2%, 6% and 10% and a polypropylene homopolymer with content of 10% of glass fibre Domolen P1-013-V10-N and 30% of glass fibre Domolen P1-102-V30-N with 2% of nanoclay. The shrinkage and ejection forces were analysed. The results show that the incorporation of nanoclays decreases the shrinkage and ejection forces whereas glass fibre decreases the shrinkage and increase ejection forces due to the increase of the elastic modulus. The nanoclays decrease the ejection force when compared with glass fibre and pure PP. The effects of nanoclays are less pronounced than those of glass fibre. The effect of the mould temperatures on the ejection forces in the mouldings produced with the mentioned materials were also analysed. The ejection force decreases with the increase of the temperature of the mould

    O futuro do cooperativismo de leite.

    Get PDF
    bitstream/item/132478/1/Livro-O-futuro-do-cooperativismo.pd
    corecore