5,516 research outputs found
Wang-Landau sampling in three-dimensional polymers
Monte Carlo simulations using Wang-Landau sampling are performed to study
three-dimensional chains of homopolymers on a lattice. We confirm the accuracy
of the method by calculating the thermodynamic properties of this system. Our
results are in good agreement with those obtained using Metropolis importance
sampling. This algorithm enables one to accurately simulate the usually hardly
accessible low-temperature regions since it determines the density of states in
a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic
Análise quantitativa dp teor de óleo em sementes com RMN de precessão livre de onda contínua (CWFP) on-line.
HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges
High Performance Computing (HPC) clouds are becoming an alternative to
on-premise clusters for executing scientific applications and business
analytics services. Most research efforts in HPC cloud aim to understand the
cost-benefit of moving resource-intensive applications from on-premise
environments to public cloud platforms. Industry trends show hybrid
environments are the natural path to get the best of the on-premise and cloud
resources---steady (and sensitive) workloads can run on on-premise resources
and peak demand can leverage remote resources in a pay-as-you-go manner.
Nevertheless, there are plenty of questions to be answered in HPC cloud, which
range from how to extract the best performance of an unknown underlying
platform to what services are essential to make its usage easier. Moreover, the
discussion on the right pricing and contractual models to fit small and large
users is relevant for the sustainability of HPC clouds. This paper brings a
survey and taxonomy of efforts in HPC cloud and a vision on what we believe is
ahead of us, including a set of research challenges that, once tackled, can
help advance businesses and scientific discoveries. This becomes particularly
relevant due to the fast increasing wave of new HPC applications coming from
big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR
Procedimentos para Recuperação Edáfica de Margens de Corpos d'Água em Zonas Urbanas.
bitstream/CNPDIA/10473/1/CT64_2005.pd
Complete high-precision entropic sampling
Monte Carlo simulations using entropic sampling to estimate the number of
configurations of a given energy are a valuable alternative to traditional
methods. We introduce {\it tomographic} entropic sampling, a scheme which uses
multiple studies, starting from different regions of configuration space, to
yield precise estimates of the number of configurations over the {\it full
range} of energies, {\it without} dividing the latter into subsets or windows.
Applied to the Ising model on the square lattice, the method yields the
critical temperature to an accuracy of about 0.01%, and critical exponents to
1% or better. Predictions for systems sizes L=10 - 160, for the temperature of
the specific heat maximum, and of the specific heat at the critical
temperature, are in very close agreement with exact results. For the Ising
model on the simple cubic lattice the critical temperature is given to within
0.003% of the best available estimate; the exponent ratios and
are given to within about 0.4% and 1%, respectively, of the
literature values. In both two and three dimensions, results for the {\it
antiferromagnetic} critical point are fully consistent with those of the
ferromagnetic transition. Application to the lattice gas with nearest-neighbor
exclusion on the square lattice again yields the critical chemical potential
and exponent ratios and to good precision.Comment: For a version with figures go to
http://www.fisica.ufmg.br/~dickman/transfers/preprints/entsamp2.pd
Structural Evidence for a Copper-Bound Carbonate Intermediate in the Peroxidase and Dismutase Activities of Superoxide Dismutase
Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O2 and H2O2. SOD also reacts with H2O2, leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO2) and H2O2, this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper. © 2012 Strange et al
Função de pedotransferência baseada em ensemble de rotação para estimativa da retenção de água no solo.
Demandas de serviços no Laboratório de Análises de Sementes da Embrapa Milho e Sorgo (CNPMS) Sete Lagoas, MG.
Edição dos resumos do 18º Congresso Brasileiro de Sementes, 2013, Florianópolis
- …
