17,472 research outputs found

    An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation

    Full text link
    In the present work we show that planetary mean distances can be calculated with the help of a Schrodinger-type diffusion equation. The obtained results are shown to agree with the observed orbits of all the planets and of the asteroid belt in the solar system, with only three empty states. Furthermore, the equation solutions predict a fundamental orbit at 0.05 AU from solar-type stars, a result confirmed by recent discoveries. In contrast to other similar approaches previously presented in the literature, we take into account the flatness of the solar system, by considering the flat solutions of the Schrodinger-type equation. The model has just one input parameter, given by the mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons & Fractal

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Plasmonic Hot Spots in Triangular Tapered Graphene Microcrystals

    Full text link
    Recently, plasmons in graphene have been observed experimentally using scattering scanning near-field optical microscopy. In this paper, we develop a simplified analytical approach to describe the behavior in triangular samples. Replacing Coulomb interaction by a short-range one reduces the problem to a Helmholtz equation, amenable to analytical treatment. We demonstrate that even with our simplifications, the system still exhibits the key features seen in the experiment.Comment: 4 pages, 3 figure

    Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)

    Full text link
    We consider, theoretically and experimentally, the effects of structural disorder, quantum and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys.We study the particular case of UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi liquid (FL) behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed non-monotonic dependence of the Curie temperature, Tc(x), with x can be explained within a model of localized spins interacting with an electronic bath whose transport properties cross-over from ballistic to diffusive regimes. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit

    Full text link
    We demonstrate how a superposition of coherent states can be generated for a microwave field inside a coplanar transmission line coupled to a single superconducting charge qubit, with the addition of a single classical magnetic pulse for chirping of the qubit transition frequency. We show how the qubit dephasing induces decoherence on the field superposition state, and how it can be probed by the qubit charge detection. The character of the charge qubit relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure

    On the relation between the propagators of dual theories

    Full text link
    In this paper, we show that the propagator of the dual of a general Proca-like theory, derived from the gauging iterative Noether Dualization Method, can be written by means of a simple relation between known propagators. This result is also a demonstration that the Lagrangian obtained by dualization describes the same physical particles as the ones present in the original theory at the expense of introducing new non-physical (ghosts) excitations.Comment: latex, 4 page
    • …
    corecore