409 research outputs found

    Growth of Green Deli Water Apple (Syzygium Samarangense (Blume) Merr. & Perry) on Difference Plant Materials and IBA Concentrations

    Full text link
    The objectives of this research was to study the growth of green deli water apple (Syzygium samarangense (Blume) Merr. & Perry on difference plant materials and IBA concentrations. This research was conducted at experimental field of Agriculture Faculty, University of North Sumatera, Medan on August until October 2015, using randomized block design with two factors, i.e cutting plant materials (branches with shoot and branches without shoot) and IBA concentration (0; 50; 100; and 150 ppm) with 3 replications. The result showed that the growth of green deli water apple with branches without shoot better than branches with shoot, the application of 100 ppm IBA concentration has given better effect than the other treatments for growth of green deli water apple and the best combination for growth of green deli water apple was branches without shoot and 100 ppm IBA concentration

    Implementation of a Deformation Model for Pressure Tubes under Irradiation

    Get PDF
    Current semi-empiric deformation models for in-reactor deformation of Zr2.5Nb CANDU pressure tubes are based on the physical model of Christodoulou et al. (Proc. 11th Int. Symp. Zirc. Nucl. Ind., ASTM STP 1295 (1996), p. 518) and consider material texture effects via the code'SELFPOLY' introduced by Tomé et al. (Philos. Mag. A67 (1993), p. 917) and Turner et al. (Philos. Mag. A 79 (1999), p. 2505). This code makes use of a 'tangent' self-consistent approach proposed by Molinari et al. (Acta Metall. 35 (1987), p. 2983) to obtain the overall response of a viscoplastic polycrystalline system in terms of the local response of the single crystals and their microstructuralmorphology. More recently, Liu and Ponte Castañeda (J. Mech. Phys. Solids 52 (2004), p. 467)derived a 'generalized-secant' self-consistent approach which has been found to improve substantially on the earlier 'tangent' approach in some cases. In this work we study the influence of the linearization procedure on the predictions for the deformation of pressure tubes. The calculations are carried out by means of the VPSC code of Lebensohn et al. (14th International Conference on Textures of Materials 495-497 (2005), p. 955). It is found that the predictions based on the 'tangent' and 'generalized-secant' approaches are quite similar, and hence the use of a 'generalized-secant' approach is not recommended for this particular problem in view of its higher computational cost. Moreover, analyzing the current in-reactor deformation model reviewed by Holt (J. Nucl. Mat. 372 (2008), p. 182), a restriction in the stress state was found. The stress tensor components are projected to the material axes that are not guaranteed to be principal, for that reason the constitutive laws are not valid for a general stress state neglecting in particular the gravity forces. Based on the same constitutive law structure, a modification is proposed that accounts for a general stress state via coupling VPSC-FEM codes.Publicado en: Mecånica Computacional vol. XXXV no.32Facultad de Ingenierí

    KINESIOLOGÍA Y ENFERMEDAD PULMONAR OBSTRUCTIVA CRÓNICA

    Get PDF
    RESUMENLos pacientes con Enfermedad Pulmonar Obstructiva Crónica (EPOC) junto con desarrollar las alteraciones respiratorias propias de la patología desarrollan también alteraciones multisistémicas que repercuten principalmente en la musculatura respiratoria y periférica, reduciendo la capacidad de tolerancia física del paciente a las actividades diarias.Junto al tratamiento médico, la kinesiología representa una importante herramienta terapéutica, ya que se orienta a mantener las capacidades físicas del paciente, tanto en sus condicionantes respiratorias como motoras.El objetivo de este artículo es mostrar la importancia de la kinesiología en este grupo de pacientes, tanto durante su periodo de hospitalización como en el período de rehabilitación después del alta.SUMMARYThe majority of patients with Chronic Obstructive Pulmonary Disease (COPD) develop the classic respiratory alterations, as well as systemic dysfunctions, by which contribute to the deterioration of the respiratory and the skeletal muscles. Consequently, all of this muscle dysfunction reduce the physical capacity in the COPD patients to develop their diary activities.The physical therapy as a complementary treatment of the medical management, is an important therapeutic tool to maintain the physical abilities of the COPD patients as much in the respiratory function as in the motor area.This paper attempts to review the importance of the physical therapy in the COPD patients, such as in the hospitalization time and in the consecutive rehabilitation time

    Phase Stability and Fast Ion Conductivity in the Hexagonal LiBH4-LiBr-LiCl Solid Solution

    Get PDF
    This study shows a flexible system that offers promising candidates for Li-based solid-state electrolytes. The Br− substitution for BH4 − stabilizes the hexagonal structure of LiBH4 at room temperature (RT), whereas Cl− is soluble only at higher temperatures. Incorporation of chloride in a hexagonal solid solution leads to an increase in the energy density of the system. For the first time, a stable hexagonal solid solution of LiBH4 containing both Cl− and Br-halide anions has been obtained at RT. The LiBH4−LiBr−LiCl ternary phase diagram has been determined at RT by X-ray diffraction coupled with a Rietveld refinement. A solubility of up to 30% of Cl− in the solid solution has been established. The effect of halogenation on the Li-ion conductivity and electrochemical stability has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. Considering the ternary samples, h-Li(BH4)0.7(Br)0.2(Cl)0.1 composition showed the highest value for conductivity (1.3 × 10−5 S/cm at 30 °C), which is about 3 orders of magnitude higher than that for pure LiBH4 in the orthorhombic structure. The values of Li-ion conductivity at RT depend only on the BH4 − content in the solid solution, suggesting that the Br/Cl ratio does not affect the defect formation energy in the structure. Chloride anion substitution in the hexagonal structure increases the activation energy, moving from about 0.45 eV for samples without Cl− ions in the structure up to about 0.63 eV for h-Li(BH4)0.6(Br)0.2(Cl)0.2 compositions, according to the Meyer−Neldel rule. In addition to increasing Li-ion conductivity, the halogenation also increases the thermal stability of the system. Unlike for the Liion conductivity, the Br/Cl ratio influences the electrochemical stability: a wide oxidative window of 4.04 V versus Li+/Li is reached in the Li−Br system while further addition of Cl is a trade-off between oxidative stability and weight reduction. The halogenation allows both binary and ternary systems operating below 120 °C, thus suggesting possible applications of these fast ion conductors as solid-state electrolytes in Li-ion batteries

    Detection of lithium plating in li-ion cell anodes using realistic automotive fast-charge profiles

    Get PDF
    The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating

    A novel epigenetic AML1-ETO/THAP10/miR-383 mini-circuitry contributes to t(8;21) leukaemogenesis

    Get PDF
    DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)(+) AML blasts differs from that of t(8;21)(-) AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP10, is a target gene and can be epigenetically suppressed by AML1-ETO at the transcriptional level in t(8;21) AML. Our findings also show that THAP10 is a bona fide target of miR-383 that can be epigenetically activated by the AML1-ETO recruiting co-activator p300. In this study, we demonstrated that epigenetic suppression of THAP10 is the mechanistic link between AML1-ETO fusion proteins and tyrosine kinase cascades. In addition, we showed that THAP10 is a nuclear protein that inhibits myeloid proliferation and promotes differentiation both in vitro and in vivo Altogether, our results revealed an unexpected and important epigenetic mini-circuit of AML1-ETO/THAP10/miR-383 in t(8;21) AML, in which epigenetic suppression of THAP10 predicts a poor clinical outcome and represents a novel therapeutic target
    • 

    corecore