41,778 research outputs found
Life science payloads planning study integration facility survey results
The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported
Cornering the unphysical vertex
In the classical pure spinor worldsheet theory of AdS5xS5 there are some
vertex operators which do not correspond to any physical excitations. We study
their flat space limit. We find that the BRST operator of the worldsheet theory
in flat space-time can be nontrivially deformed without deforming the
worldsheet action. Some of these deformations describe the linear dilaton
background. But the deformation corresponding to the nonphysical vertex differs
from the linear dilaton in not being worldsheet parity even. The nonphysically
deformed worldsheet theory has nonzero beta-function at one loop. This means
that the classical Type IIB SUGRA backgrounds are not completely characterized
by requiring the BRST symmetry of the classical worldsheet theory; it is also
necessary to require the vanishing of the one-loop beta-function.Comment: LaTeX 40pp; v2: explained the relation to the linear dilaton
background (Section 6), changes in Introduction and Abstrac
A stochastic-hydrodynamic model of halo formation in charged particle beams
The formation of the beam halo in charged particle accelerators is studied in
the framework of a stochastic-hydrodynamic model for the collective motion of
the particle beam. In such a stochastic-hydrodynamic theory the density and the
phase of the charged beam obey a set of coupled nonlinear hydrodynamic
equations with explicit time-reversal invariance. This leads to a linearized
theory that describes the collective dynamics of the beam in terms of a
classical Schr\"odinger equation. Taking into account space-charge effects, we
derive a set of coupled nonlinear hydrodynamic equations. These equations
define a collective dynamics of self-interacting systems much in the same
spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the
collective dynamics for interacting quantum many-body systems. Self-consistent
solutions of the dynamical equations lead to quasi-stationary beam
configurations with enhanced transverse dispersion and transverse emittance
growth. In the limit of a frozen space-charge core it is then possible to
determine and study the properties of stationary, stable core-plus-halo beam
distributions. In this scheme the possible reproduction of the halo after its
elimination is a consequence of the stationarity of the transverse distribution
which plays the role of an attractor for every other distribution.Comment: 18 pages, 20 figures, submitted to Phys. Rev. ST A
Boundary effects on the scaling of the superfluid density
We study numerically the influence of the substrate (boundary conditions) on
the finite--size scaling properties of the superfluid density in
superfluid films of thickness within the XY model employing the Monte Carlo
method. Our results suggest that the jump at the
Kosterlitz--Thouless transition temperature depends on the boundary
conditions.Comment: 2 pages, 1 Latex file, 1 postscript figure, 2 style file
Symbiotic stars in X-rays III: Suzaku observations
We describe the X-ray emission as observed with Suzaku from five symbiotic
stars that we selected for deep Suzaku observations after their initial
detection with ROSAT, ASCA and Swift. We find that the X-ray spectra of all
five sources can be adequately fit with absorbed, optically thin thermal plasma
models, with either single- or multi-temperature plasmas. These models are
compatible with the X-ray emission originating in the boundary layer between an
accretion disk and a white dwarf. The high plasma temperatures of kT keV
for all five targets were greater than expected for colliding winds. Based on
these high temperatures, as well as previous measurements of UV variability and
UV luminosity, and the large amplitude of X-ray flickering in 4 Dra, we
conclude that all five sources are accretion-powered through predominantly
optically thick boundary layers. Our X-ray data allow us to observe a small,
optically thin portion of the emission from these boundary layers. Given the
time between previous observations and these observations, we find that the
intrinsic X-ray flux and the intervening absorbing column can vary by factors
of three or more on a time scale of years. However, the location of the
absorber and the relationship between changes in accretion rate and absorption
are still elusive.Comment: 14 pages, 3 figures and 3 tables. Accepted to published 04/15/2016.
arXiv admin note: substantial text overlap with arXiv:1505.0063
Controlled quantum evolutions and transitions
We study the nonstationary solutions of Fokker-Planck equations associated to
either stationary or nonstationary quantum states. In particular we discuss the
stationary states of quantum systems with singular velocity fields. We
introduce a technique that allows to realize arbitrary evolutions ruled by
these equations, to account for controlled quantum transitions. The method is
illustrated by presenting the detailed treatment of the transition
probabilities and of the controlling time-dependent potentials associated to
the transitions between the stationary, the coherent, and the squeezed states
of the harmonic oscillator. Possible extensions to anharmonic systems and mixed
states are briefly discussed and assessed.Comment: 24 pages, 4 figure
Chern-Simons Quantization of (2+1)-Anti-De Sitter Gravity on a Torus
Chern-Simons formulation of 2+1 dimensional Einstein gravity with a negative
cosmological constant is investigated when the spacetime has the topology . The physical phase space is shown to be a direct product of two
sub-phase spaces each of which is a non-Hausdorff manifold plus a set with
nonzero codimensions. Spacetime geometrical interpretation of each point in the
phase space is also given and we explain the 1 to 2 correspondence with the ADM
formalism from the geometrical viewpoint. In quantizing this theory, we
construct a "modified phase space" which is a cotangnt bundle on a torus. We
also provide a modular invariant inner product and investigate the relation to
the quantum theory which is directly related to the spinor representation of
the ADM formalism. (This paper is the revised version of a previous
paper(hep-th/9312151). The wrong discussion on the topology of the phase space
is corrected.)Comment: latex 28 page
A Composite Little Higgs Model
We describe a natural UV complete theory with a composite little Higgs. Below
a TeV we have the minimal Standard Model with a light Higgs, and an extra
neutral scalar. At the TeV scale there are additional scalars, gauge bosons,
and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce
the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass
squared parameter, without finetuning, occurs due to a softly broken shift
symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale
the theory has new strongly coupled interactions. A perturbatively
renormalizable UV completion, with softly broken supersymmetry at 10 TeV is
explicitly worked out. Our theory contains new particles which are odd under an
exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is
likely to be a feature of many theories of new TeV scale physics. The lightest
parity odd particle, or "LPOP", is most likely a neutral fermion, and may make
a good dark matter candidate, with similar experimental signatures to the
neutralino of the MSSM. We give a general effective field theory analysis of
the calculation of corrections to precision electroweak observables.Comment: 28 page
- …