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The formation of the beam halo in charged particle accelerators is studied in the framework of a
stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-
hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear
hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory
that describes the collective dynamics of the beam in terms of a classical Schrödinger equation.
Taking into account space-charge effects, we derive a set of coupled nonlinear hydrodynamic equa-
tions. These equations define a collective dynamics of self-interacting systems much in the same
spirit as in the Gross-Pitaevskii and Landau-Ginzburg theories of the collective dynamics for in-
teracting quantum many-body systems. Self-consistent solutions of the dynamical equations lead
to quasi-stationary beam configurations with enhanced transverse dispersion and transverse emit-
tance growth. In the limit of a frozen space-charge core it is then possible to determine and study
the properties of stationary, stable core-plus-halo beam distributions. In this scheme the possible
reproduction of the halo after its elimination is a consequence of the stationarity of the transverse
distribution which plays the role of an attractor for every other distribution.

PACS numbers: 02.50.Ey, 05.40.-a, 29.27.Bd, 41.85.Ew.

I. INTRODUCTION

High intensity beams of charged particles, in par-
ticular in linacs, have been proposed in recent years
for a wide variety of accelerator–related applications:
drivers for sources of neutron spallation; production of
tritium; transmutation of radioactive wastes to species
with shorter lifetimes; heavy ion drivers for fusion-based
production of thermonuclear energy; production of ra-
dioactive isotopes for medical use, and so on. In all these
cases it is very important to keep at a low level the beam
losses to the wall of the beam pipe, since even small frac-
tional losses in a high–current machine can cause exceed-
ingly high levels of radioactivation. It is now widely be-
lieved that one of the relevant mechanisms for these losses
is the formation of a low intensity halo relatively far from
the core of the beam. These halos have been either di-
rectly observed [1] or inferred from experiments [2], and
have also been predicted from extensive numerical simu-
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lations [3, 4, 5, 6, 7, 8, 9, 10, 11]. Often in these stud-
ies the particle–core model has been used to understand
the halo formation and its extent. That notwithstand-
ing, it is widely believed that for the next generation of
high intensity machines it is necessary to obtain a more
quantitative understanding not only of the physics of the
halo, but also of the beam transverse distribution in gen-
eral [12, 13, 14]. In fact “because there is not a consensus
about its definition, halo remains an imprecise term” [15]
so that several proposals have been put forward for its
description.

Charged particle beams are usually described in terms
of classical deterministic dynamical systems. The stan-
dard model is that of a collisionless plasma where the
corresponding dynamics is embodied in a suitable phase
space (see for example [16]). Generally speaking, the
beams are described in a comoving reference system so
that we can confine ourselves to a non relativistic set-
ting. In this framework, the formation of the halo has
been studied mainly by means of the particle-core model
initially proposed by Gluckstern, and the simulations
show that the dynamical instabilities due to a paramet-
ric resonance can allow ions to escape from the core
[3, 4, 5, 6, 7, 8, 9, 10, 11].

In the present paper we propose and develop a different
approach. We introduce a model for the formation of the
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halo based on the idea that the trajectories of the charged
particles are sample paths of a stochastic process, rather
than the usual deterministic (differentiable) trajectories.
A random collisional plasma described in terms of con-
figurational stochastic processes seems a realistic model
for the dynamics taking place in particle accelerators.
Moreover, it can explain the rare escape of particles from
a quasi-stable beam core, since it takes into account, sta-
tistically, the complicated inter-particle interactions that
cannot be described in detail. Of course, the idea of a
stochastic approach is hardly new [16, 17, 18], but there
are several different ways to implement it. The system we
want to describe is the particle beam endowed with some
measure of time-reversal invariance. For such a physical
situation one is faced with a many-body dynamical sys-
tem which is at the same time stochastic (due to the ran-
dom collisions and the fast, irregular configurational dy-
namics) and conservative (time-reversal invariant). One
then needs a generalization of classical mechanics for con-
servative deterministic systems to a classical mechanics
of conservative stochastic systems, i.e. a stochastic me-
chanics.

Despite the rather widespread misconception that
stochastic processes in dynamics are always associated
to the description of dissipative and irreversible behav-
iors, it is in fact possible for specific stochastic dynamical
systems to exhibit time-reversal invariance. In general,
these systems are such that a deterministic dynamics in
terms of known external potentials is ascribed to a system
whose kinematics, due to some intrinsic irregularities, is
instead stochastic [19]. This is the case we conside for
the collisional beam.

In previous papers [20, 21] we analysed some basic
properties of stochastic mechanics (SM) and we also in-
troduced some basic criteria of mechanical stability in or-
der to provide phenomenological support to the scheme
of SM for classical stochastic dynamical systems. In par-
ticular, in Ref. [20] we applied SM to the description of
the dynamics of charged particle beams, and we showed
how the criteria of mechanical stability allow to connect
the (transverse) emittance to the characteristic micro-
scopic scales of the system and to the total number of
particles in a given beam. Moreover, this method allows
to implement techniques of active control for the dynam-
ics of the beam. In Ref. [20] these techniques have been
proposed to improve the beam focusing and to indepen-
dently change the frequency of the betatron oscillations.

In the present paper, the SM of particle beams is used
to investigate the nature, the size and the dynamical
characteristics of beam halos. In particular, we deter-
mine the effects of the space–charge interaction on the
formation of the halo by calculating the growth of the
beam emittance, and by estimating the probability to
find particles far away from the beam core. We then
consider the reverse problem i.e., by imposing reason-
able forms of the stationary halo distributions we derive
the effective spatial potentials that are associated to such
distributions.

The paper is organized as follows: in Sections II and III
we summarize the results of previous papers on the model
of SM for particle beams with special emphasis on the
techniques of active control needed to engineer a desired
beam dynamics. We then apply SM to study the forma-
tion of the beam halo. In Section IV we show how to treat
with SM the effects of space charge due to the electro-
magnetic interactions among the particles. We introduce
and solve self-consistently a set of coupled, nonlinear hy-
drodynamic equations for the beam density and phase,
the space-charge potentials, and the external electromag-
netic field. Solution of the coupled equations leads to the
first main result of our paper, i.e. that the final trans-
verse particle distribution is greatly broadened due to the
presence of the space-charge potential. This broadening
gives rise to a penetration of the distribution well into
spatial regions very far from the core of the beam, thus
realizing a type of continuous halo, i.e. without inter-
mediate voids of particles (nodes of the transverse beam
distribution). This effect is reflected in a corresponding
growth of the transverse emittance that we estimate from
the solution of the self-consistent equations. In Section
V we study the reverse problem: given different station-
ary transverse distributions of the halo around the core
of the beam, such as a continuous broadened distribu-
tion or a distribution with a gap (void) between the halo
and the core, we determine the dynamics that leads to
such configurations. This is important since it enables
us to deduce the form of the effective potentials which
control the stationarity of the halo distribution. Finally,
in Section VI we draw our conclusions and discuss future
directions of research.

II. STOCHASTIC BEAM DYNAMICS

The usual way to introduce a stochastic dynamical sys-
tem is to modify the dynamics in phase space by adding
a Wiener noise only in the equation for the momentum,
in order to preserve the usual relations between position
and velocity:

mdQ(t) = P(t) dt

dP(t) = F(Q(t),P(t), t) dt + β dB(t) (1)

where m is the mass of the system, Q(t) is the posi-
tion variable, P(t) is the momentum variable, F is the
external force, and B(t) is a fluctuating force modelled
by a Wiener process; in general, this procedure yields a
differentiable, but non Markovian process Q(t) for the
position (here β denotes the autocorrelation of the fluc-
tuating force). The standard example of this approach is
that of a Brownian motion in a force field described by
the Ornstein–Uhlenbeck system of stochastic differential
equations (SDE) [22]:

mdQ(t) = P(t) dt

dP(t) = K(Q(t), t) dt−mγP(t) dt+ β dB(t) (2)
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where K is the spatial gradient of the external poten-
tial, and γ is the damping constant. This system can be
reduced to yield a non differentiable, Markovian process
Q(t) acted on by a Wiener noise, with diffusion coeffi-
cient D, to the equation for the position. In this case we
are forced to drop the equation for the momentum since
Q(t) is no longer differentiable, and we can reduce the
stochastic system to the single SDE

dQ(t) = v(+)(Q(t), t) dt+
√
DdW(t) (3)

where v(+)(r, t) is the so called forward velocity, and
dW(t) ≡ W(t+dt)−W(t) is the increment of a standard
Wiener noise W(t); as it is well known, this increment is
a Gaussian process. The standard example of this reduc-
tion is the Einstein-Smoluchowski approximation of the
Ornstein–Uhlenbeck process in the overdamped case.

It is however possible to introduce Eq. (3) in a com-
pletely different context, as the defining equation for a
theory of stochastic dynamical systems in configuration
space, rather than in phase space. This amounts to con-
sider a system whose kinematics, rather than its dynam-
ics, is taken ab initio to be random. By doing this, no
external sources of dissipation and irreversibility are in-
troduced on the forces acting on the system. Instead, a
source of randomness is assumed that perturbs only the
configurations of the system. For such systems with ran-
dom kinematics, the dynamics can then be introduced
either by generalizing the Newton equation [22, 23], or
by introducing a stochastic variational principle [22, 24].
The crucial aspect is that such a dynamics turns out
to be both stochastic and conservative. In this scheme,
since Q(t) is not differentiable, there is no velocity as a
standard derivative. Instead it is possible to define in a
suitable way [22] an average velocity v(+) in the forward
time direction, and an average velocity in the backward
time direction v(−): these functions of r and t are differ-
ent, and they both coincide with the usual velocity only
if the process is differentiable, i.e. if the kinematics is
deterministic. The relations between v(+) and v(−) will
be introduced in the subsequent discussion. It is impor-
tant to remark that v(+)(r, t) is no more an a priori given
field: it plays now the role of a dynamical variable.

The stochastic dynamical scheme sketched above is
known as Stochastic Mechanics (SM), and most of its
applications have concerned the problem of developing
a classical stochastic model for the simulation of Quan-
tum Mechanics. Nonetheless, it is a very general model
which can be applied to very different stochastic dynam-
ical systems endowed with time-reversal invariance [25].
We will show below how one can derive from the stochas-
tic variational principle two coupled, nonlinear hydrody-
namic equations for the density and the phase of a dy-
namical system in configuration space. These two real,
coupled equations can be recast into a single complex
equation whose form is completely equivalent to that of
a Schrödinger differential equation. In this sense, some
authors denote classical dynamical systems described by
SM as quantum-like systems, in analogy with other re-

cent studies on the collective dynamics of charged particl
beams [26, 27].

In general, SM can be used to describe every conser-
vative, stochastic dynamical system satisfying fairly gen-
eral conditions: for instance, it is known that for any
given conservative diffusion there is a correspondence be-
tween the associated diffusion process and a solution of
the Schrödinger equation with Hamiltonians associated
to suitable vector and scalar potentials [28]. Under some
regularity conditions this correspondence is one-to-one.
The usual Schrödinger equation, and hence quantum me-
chanics, are recovered when the diffusion coefficient D
is independent from the values taken by the conserva-
tive diffusion process and coincides with ~/2m, where
~ denotes the Planck constant. Here we are not inter-
ested in the stochastic modelling of quantum mechanics,
but rather in the classical stochastic dynamics of particle
beams. In this instance the unit of action appearing in
the effective Schrödinger equation is linked to the beam
emittance as will be clarified below.

We will now describe the stochastic process performed
by a representative particle of the beam that oscillates,
in a comoving reference frame, around the closed ideal
orbit in a particle accelerator. We consider the three-
dimensional (3d) diffusion process Q(t), taking the val-
ues r, which describes the motion of the representative
particle and whose probability density coincides with the
particle density of the beam. The evolution of this pro-
cess is ruled by the Itô SDE (3) where the diffusion co-
efficient D is supposed to be constant. The quantity
α = 2mD, which has the dimensions of an action, will be
connected later to the characteristic transverse emittance
of the beam. Eq. (3) defines the random kinematics per-
formed by the collective degree of freedom, and replaces
the simple deterministic kinematics

dq(t) = v(q(t), t)dt (4)

for the differentiable trajectory q(t).
We are in a situation in which we have both a ran-

dom, diffusive kinematics and a time reversal invariance.
Therefore, to counteract the dissipation, one must im-
pose a conservative dynamics on the stochastic kinemat-
ics, at variance with the purely dissipative Fokker-Planck
or Langevin dynamics. A conservative dynamics imposed
on a random kinematics can be introduced by a suitable
stochastic generalization of the least action principle of
classical mechanics [24]. This is achieved by replacing
the classical deterministic kinematics (4) with the ran-
dom diffusive kinematics (3) as the independent configu-
rational variables of the Lagrangian density entering the
action functional. The equations of motion thus obtained
by minimizing the action functional take the form of two
coupled hydrodynamic equations that describe the dy-
namical evolution of the beam profile and of the associ-
ated velocity field. In the following we briefly sketch the
derivation of the hydrodynamic equations, referring for
details to references [22, 24].

Given the SDE (3), we consider the probability density
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function (pdf) ρ(r, t) associated to the diffusion Q(t) so
that, besides the forward velocity v(+)(r, t), we can also
define the backward velocity

v(−)(r, t) ≡ v(+)(r, t) − 2D
∇ρ(r, t)
ρ(r, t)

. (5)

It is also useful to introduce the current and the osmotic
velocity fields, defined as:

v ≡ v(+) + v(−)

2
; u ≡ v(+) − v(−)

2
= D

∇ρ
ρ
. (6)

The velocities in Eq. (6) have a transparent physical
meaning: the current velocity v represents the global
velocity of the density profile, being the stochastic gen-
eralization of the velocity field of a classical perfect fluid.
On the other hand the osmotic velocity u is clearly of
intrinsic stochastic nature, for it is a measure of the non
differentiability of the stochastic trajectories, and it is
related to the spatial variations of the density. In the
limit of a deterministic process, i.e. of a diffusion that
tends to a deterministic, differentiable trajectory q(t),
the current velocity v(r, t) tends to the classical veloc-
ity field v(q(t), t), and the osmotic velocity u tends to
zero (the trajectory becomes differentiable, so that the
forward and backward velocities, i.e. the left and right
derivatives coincide).

In order to establish the stochastic generalization of
the least action principle one introduces a mean classi-
cal action averaged over the probability density function
of the diffusion process, in strict analogy to the classi-
cal deterministic action. In fact, the main difficulty in
the stochastic case is due to the non differentiable char-
acter of the sample paths of a diffusion process which
does not allow to define the time derivative of the pro-
cess Q(t). Hence the definition of a Lagrangian density
and of an action functional is possible only in an aver-
age sense through a suitable limit on expectations. The
stochastic action is then defined as [22, 24]

A =

∫ t1

t0

lim
∆t→0+

E

[
m

2

(
∆Q

∆t

)2

− V (Q)

]
dt , (7)

where E( · ) =
∫
( · )ρ(r, t) dr denotes the expectation of a

function of the diffusion process Q(t), V is an external
potential, and ∆Q(t) = Q(t + ∆t) − Q(t) is the finite
increment of the process. It can be shown that the mean
action (7) associated to the diffusive kinematics (3) can
be recast in the following particularly appealing Eulerian
hydrodynamic form [22]:

A =

∫ t1

t0

dt

∫
dr

[m
2

(
v2 − u2

)
− V

]
ρ(r, t) , (8)

where v and u are defined in Eq. (6). This Eulerian form
of the action immediately shows that when u = 0 (and
hence the trajectories are differentiable) it coincides with

the action for the conservative dynamics of a classical Li-
ouville fluid. The stochastic variational principle now fol-
lows by imposing the stationarity of the stochastic action
(δA = 0) under smooth and independent variations δρ of
the density, and δv of the current velocity, with vanishing
boundary conditions at the initial and final times.

As a first consequence we get that the current velocity
has the following gradient form:

mv(r, t) = ∇S(r, t) , (9)

which can be also taken as the definition of the phase S.
The non linearly coupled Lagrange equations of motion
for the density ρ and for the current velocity v, of the
form (9), are a continuity equation typically associated
to every diffusion process

∂tρ = −∇ · (ρv) , (10)

and an evolution equation for the conservative dynamics

∂tS +
m

2
v2 − 2mD2∇2√ρ

√
ρ

+ V (r, t) = 0 . (11)

The above equations give a complete characterization
of time-reversal invariant diffusion processes. The last
equation is formally analogous to the Hamilton–Jacobi–
Madelung (HJM) equation originally introduced in the
hydrodynamic formulation of quantum mechanics by
Madelung [29]. However, the physical origins of the two
equations are profoundly different, as in the quantum
mechanical case the diffusion coefficient is related to the
fundamental Planck constant by the relation D = ~/2m.
Notice that when D = 0 (namely when the kinematics is
not diffusive) the equation (11) coincides with the usual
Hamilton–Jacobi equation for a Liouville fluid. Since (9)
holds, the two equations (10) and (11) can be recast in
the following form

∂tρ = − 1

m
∇ · (ρ∇S) (12)

∂tS = − 1

2m
∇S2 + 2mD2∇2√ρ

√
ρ

− V (r, t) (13)

which now constitutes a coupled, non linear system of
partial differential equations for the couple (ρ, S) which
completely determines the state of our beam. On the
other hand, because of (9), this state is equivalently given
by the couple (ρ,v).

Eqns. (12) and (13) describe the collective behavior of
the beam at each instant of time through the evolution
of both its particle density and its velocity field. It is
important to notice that, introducing the representation
[29]

ψ(r, t) =
√
ρ(r, t) eiS(r,t)/α , (14)

with

α = 2mD , (15)
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the two coupled real equations (12) and (13) are equiv-
alent to a single complex Schrödinger equation for the
function ψ, with the Planck action constant ~ replaced
by the unit of action α:

iα∂tψ = − α2

2m
∇2ψ + V ψ . (16)

In this formulation the phenomenological “wave func-
tion” ψ carries the information on the dynamics of both
the beam density and the beam velocity field, since the
velocity field is determined via Eq. (9) by the phase func-
tion S(r, t). This shows, as previously claimed, that our
procedure, starting from a different point of view, leads
to a description formally analogous to that of the so-
called quantum-like approaches to beam dynamics [26].
We remark again that obviously Eq. (16) has not the
same meaning as in quantum mechanics. The parameter
α defined in Eq. (15) has the dimensions of an action, but
in general α 6= ~. In fact, α is not a universal constant
and its value cannot coincide with ~, as its value depends
on the physical system under study. However, α plays in
some sense a role similar to that of ~ in quantum me-
chanics since, as we will see in the following, it identifies
a lower bound for the beam emittance in phase space,
and gives a measure of the position-momentum uncer-
tainty arising from the stochastic dynamics of the beam.
Thus the Schrödinger equation (16) for the stochastic
mechanics of particle beams presents some features rem-
iniscent of quantum mechanics, but at the same time is
a deeply different theory with a different physical mean-
ing. In particular, while in quantum mechanics a system
of N particles is described by a wave function in a 3N–
dimensional configuration space, in the scheme of SM
the normalized probability density distribution |ψ(r)|2 is
a function of only the three space coordinates in phys-
ical space. If there are N particles in the beam, then
the function N |ψ(r)|2 is simply the particle density in
physical space.

III. CONTROLLED BEAM STATES

In the previous section we have introduced two cou-
pled equations that describe the dynamical behavior of
the beam: the first is the Itô equation (3), or equiva-
lently the continuity equation (either (10) or (12)); the
second is the Hamilton-Jacobi-Madelung (HJM) equa-
tion (either (11) or (13)). Here we briefly summarize a
general procedure, already exploited in Refs. [20, 30, 31],
to engineer a controlled dynamics of stochastic systems.
We will then apply this method to the control of the
beam halo in Section V.

To this end it is useful to show, by simple substitution
from (6), that Eq. (10) is equivalent to the Fokker–Planck
(FP) equation

∂tρ = −∇ · [v(+)ρ] +D∇2ρ, (17)

formally associated to the Itô equation (3). The HJM
equation (11) can also be cast in a form based on v(+)

rather than on v, namely:

∂tS = −m
2

v2
(+) +mDv(+)

∇ρ
ρ

+mD2

[
∇2ρ

ρ
−

(∇ρ
ρ

)2
]
− V

= −m
2

v2
(+) +mD v(+)∇ ln f

+mD2∇2 ln f − V , (18)

where we have defined the function f ≡ ρ/N , and N is a
constant such that f is dimensionless. On the other hand,
we know from Eqns. (5) and (6) that also the forward
velocity v(+) is irrotational:

v(+)(r, t) = ∇W (r, t), (19)

where the scalar functions W and S are connected by the
relation

S(r, t) = mW (r, t) −mD ln f(r, t) − θ(t), (20)

and θ is an arbitrary time-dependent function. Through
Eq. (19), Eqns. (17) and (18) can be cast in a form anal-
ogous to the system of Eqns. (12) and (13). In this case,
the couple of functions which determine the state of the
beam is (ρ,W ) (or equivalently (ρ,v(+))).

It is worth noticing that the possibility of a time rever-
sal invariance [23] is assured by the fact that the forward
velocity v(+)(r, t) is not an a priori given field, as is the
case for dissipative diffusion processes of the Langevin
type. Rather, it is dynamically determined at any in-
stant of time, for any assigned initial condition, through
the HJM evolution equation (11).

Let us suppose now that the beam density ρ(r, t) is
given at some time t. We may think for instance of an
engineered evolution from some initial density toward a
final, required state with suitable properties. In particu-
lar, we could imagine to have a halo-ridden particle dis-
tribution in the beam that should be steered toward a
final halo-free distribution. We know that ρ must be a
solution of the FP equation (17) for some forward veloc-
ity field v(+)(r, t), which we consider here as not given a
priori. Since also Eq. (19) must be satisfied, this means
that – for a given ρ – we should find an irrotational v(+)

in such a way that the FP equation (17) is satisfied. In
other words, we are required to solve the partial differ-
ential equation

∇ · v(+) +
∇ρ
ρ

· v(+) = D
∇2ρ

ρ
− ∂tρ

ρ
, (21)

for the irrotational vector field v(+), or equivalently, by
taking Eq. (19) into account, the second order partial
differential equation for the scalar field W :

∇2W +
∇ρ
ρ

· ∇W = D
∇2ρ

ρ
− ∂tρ

ρ
. (22)
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This is not, in general, an easy task, but we will give here
the solutions for a few simple cases that will be useful in
the following.

In the one-dimensional (1d) case (ρ(x, t)), the FP equa-
tion defined for a < x < b (here we could possibly have
a = −∞, and b = +∞) is:

∂tρ = −∂x[v(+)ρ] +D∂2
xρ = ∂xJ, (23)

where J = D∂xρ− v(+)ρ is the probability current. It is
easy to see now that the solution is

v(+)(x, t) =
1

ρ

[
c(t) +D∂xρ−

∫ x

a

∂tρ(x
′, t) dx′

]
, (24)

where c(t) is an arbitrary function. Moreover, since the
conservation of probability imposes, in particular, that
J(a) = 0, it is easy to see that we must choose c(t) = 0
so that finally we have

v(+)(x, t) = D
∂xρ

ρ
− 1

ρ

∫ x

a

∂tρ(x
′, t) dx′ . (25)

Of course, in this case we also have

W (x, t) =

∫ x

a

v(+)(x
′, t) dx′ . (26)

This 1d solution will be useful later for a simplified study
of beam distributions when we take x as one of the trans-
verse coordinates of the beam.

Another case of practical interest is that of a 3d sys-
tem with cylindrical symmetry around the z-axis (which
will be supposed to be the beam longitudinal axis). If we
denote with (r, ϕ, z) the cylindrical coordinates, where

r =
√
x2 + y2, we will suppose that ρ(r, t) depends only

on r and t, and that v(+) = v(+)(r, t) r̂ is radially di-
rected, with modulus depending only on r and t. In this
case, it is straightforward to see that the equation for
v(+) is

∂rv(+) +

(
1

r
+
∂rρ

ρ

)
v(+) = D

(
∂2

rρ

ρ
+
∂rρ

rρ

)
− ∂tρ

ρ
,

(27)
whose solution is

v(+)(r, t) = D
∂rρ

ρ
− 1

rρ

∫ r

0

∂tρ(r
′, t)r′ dr′ . (28)

In this case

W (r, t) =

∫ r

0

v(+)(r
′, t) dr′ . (29)

Finally, in the 3d stationary case the beam density ρ is
independent of t. This greatly simplifies the treatment,
as it is easy to check by simple substitution, and we sim-
ply find

v(+)(r) = D
∇ρ(r)
ρ(r)

, (30)

with

W (r) = D ln f(r) . (31)

This result corresponds to the well known fact that for
stationary forward velocities the FP equation (17) always
admits stationary solutions of the form

ρ(r) = N eW (r)/D . (32)

Remark however that also for particular choices of a
non stationary ρ(r, t) it is sometimes possible to find a
stationary velocity field v(+)(r) such that the FP equa-
tion (17) is satisfied (think for instance to the Ornstein–
Uhlenbeck non stationary solutions): this fact will be of
use in the following Sections.

Now that ρ and W (or equivalently v(+)) are given and
satisfy Eq. (17), we should also remember that they will
qualify as a good description of our system only if they
also are a solution of the dynamical problem, namely if
they satisfy the HJM equation (18). Since W , v(+) and
ρ are now fixed, this last equation must be considered
as a constraint relation defining an external controlling
potential V which, after straightforward calculations and
in terms of the dimensionless distribution f , turns out to
be of the general form:

V (r, t) = mD2 ∇2 ln f +mD (∂t ln f + v(+) · ∇ ln f)

−m
2

v2
(+) −m∂tW + θ̇ . (33)

This procedure can in principle be applied also to more
complicated instances, for example to engineer a beam
dynamics that keeps the beam coherent even in the pres-
ence of aberrations, or to engineer some desired evolu-
tion. However the solutions will not always be available
in closed form, and will in general require some approx-
imate treatment. Here we present the simple analytic
solutions for the three particular cases discussed above.

In the 1d case f(x, t), with v(+) given by Eq. (25), the
controlling potential is:

V (x, t) = θ̇ +mD2 ∂2
x ln f +mD (∂t ln f + v(+)∂x ln f)

−m
2
v2
(+) −m

∫ x

a

∂tv(+)(x
′, t) dx′. (34)

In the 3d, cylindrically symmetric case f(r, t), with v(+)

given by (28), we have instead:

V (r, t) =
mD2

r
∂r(r∂r ln f) +mD(∂t ln f + v(+)∂r ln f)

−m
2
v2
(+) −m

∫ r

0

∂tv(+)(r
′, t) dr′ + θ̇. (35)

Finally, in the 3d stationary case ρ(r) with v(+) given by
Eq. (30), the potential is still time-dependent because of
the presence of the arbitrary function θ(t), and it reads:

V (r, t) = θ̇ + 2mD2 ∇2√ρ
√
ρ

. (36)
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In order to make it stationary it will be enough to require
that θ̇(t) be a constant E, so that

V (r) = E + 2mD2 ∇2√ρ
√
ρ

. (37)

In this stationary case the constant E fixes the zero of the
potential energy, and the phenomenological wave func-
tion (14) takes the form

ψ(r, t) =
√
ρ e−iEt/α (38)

typical of stationary states.

IV. SELF-CONSISTENT EQUATIONS

One of the possible mechanisms for the formation of
the halo in particle beams is that due to the unavoid-
able presence of space charge effects. In this Section
we will investigate this possibility in the framework of
our hydrodynamic-stochastic model of beam dynamics.
To this end, we take into account the space charge ef-
fects by coupling the hydrodynamic equations of stochas-
tic mechanics with the Maxwell equations which de-
scribe the mutual electromagnetic interactions between
the particles of the beam. We thus obtain a self-
consistent, stochastic magnetohydrodynamic system of
coupled nonlinear differential equations that can be nu-
merically solved to show the effect of the space charge.

In the following, the reference physical system will be
an ensemble of N identical copies of a single charged par-
ticle embedded in a particle beam and subject to both
an external and a space-charge potential. In a reference
frame comoving with the beam, our system is then de-
scribed by the Schrödinger equation (43), where α is the

unit of action (emittance) and Ĥ the Hamiltonian oper-
ator which will be explicitly determined in the following.
Since in general ψ is not normalized, we introduce the
following notation for its constant norm

‖ψ‖2 =

∫

R3

|ψ(r, t)|2 d3r , (39)

so that, if N is the number of particles with individual
charge q0, the space charge density of the beam will be

ρsc(r, t) = Nq0
|ψ(r, t)|2
‖ψ‖2

. (40)

On the other hand its electrical current density will be

jsc(r, t) = Nq0
α

m

Im {ψ∗(r, t)∇ψ(r, t)}
‖ψ‖2

, (41)

which vanishes when the wave function is stationary,
namely when

ψ(r, t) = u(r) e−iEt/α . (42)

For a charged particle in the beam the electromagnetic
field is the superposition of the space-charge potential
(Asc,Φsc) due to the presence of ρsc and jsc, plus the ex-
ternal potential (Aext,Φext), and hence the Schrödinger
equation takes the form

iα∂tψ =
1

2mc2
[iαc∇− q0(Asc + Aext)]

2 ψ

+q0 (Φsc + Φext)ψ . (43)

Eq. (43) has then to be coupled with the Maxwell equa-
tions for the vector and scalar potentials (Asc,Φsc).
Since we are in a reference frame comoving with the
beam, we can always assume that the wave function is of
the stationary form (42). In this case we have jsc = 0,
so that Asc = 0. Finally, by taking also Aext = 0, our
system is reduced to two coupled, nonlinear equations
for the pair (u,Φsc). For details see Appendix A. If
the beam with space-charge interactions stays cylindri-
cally symmetric the function u will depend only on the
cylindrical radius r and our system becomes (see equa-
tions (A5) and (A6) in Appendix A):

Eu = − α2

2m

(
u′′ +

u′

r

)
+ (Vext + Vsc)u , (44)

Nq20
2πǫ0LA

u2 = −
(
V ′′

sc +
V ′

sc

r

)
, (45)

where

A =

∫ ∞

0

ru2(r) dr , ‖u‖2 = 2πLA , (46)

with L the length of the beam, and

Vext(r, t) = q0Φext(r, t) , Vsc(r, t) = q0Φsc(r, t) . (47)

Eq. (44) is the stationary Schrödinger equation in the ex-
ternal scalar potential, and Eq. (45) is the Poisson equa-
tion for the space-charge scalar potential. We proceed
to solve numerically this nonlinear system and compare
its solution with that for a purely external potential Vext

which is a cylindrically symmetric, harmonic potential
with a proper frequency ω in absence of space charge (see

Appendix B): Vext = (mω2r2)/2, with r =
√
x2 + y2.

Let us first introduce the dimensionless quantities

s =
r

σ
√

2
,

w(s) = w

(
r

σ
√

2

)
≡ σ3/2u(r) , (48)

v(s) = v

(
r

σ
√

2

)
≡ 4mσ2

α2
Vsc(r) ,

where σ2 = α/2mω is the variance of the ground state of
the cylindrical harmonic oscillator without space charge.
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Eqns. (44) and (45) can then be recast in the dimension-
less form

sw′′(s) + w′(s) + [β − s2 − v(s)] sw(s) = 0 , (49)

sv′′(s) + v′(s) + b sw2(s) = 0 , (50)

where

β =
4mσ2

α2
E =

2E

αω
,

b =
4mσ2

α2

Nq20
2πǫ0L

1

B
=

2

αω

Nq20
2πǫ0L

1

B
, (51)

B =
Aσ

2
=

∫ ∞

0

sw2(s) ds .

The effect of the space charge will be finally accounted
for by comparing the normalized solution w(s) with the
unperturbed ground state of the cylindrical harmonic os-
cillator (see Appendix B):

ψ000(r) =
e−r2/4σ2

σ
√

2πL
. (52)

We have solved numerically the system (49), (50) by ten-
tatively fixing one of the two free parameters b and β, and
then searching by an iterative trial and error method a
value of the other such that the solution shows, in a given
interval of values of s, the correct infinitesimal asymp-
totic behavior for large values of s. We have then nor-
malized the solutions w(s) by calculating numerically the
value of B. It is clear from the definition of the dimen-
sionless parameters B, b and β (51) that the value of β is
a sort of reduced energy eigenvalue of the system, while
the product

γ = Bb , (53)

which is by definition a non negative number, will play
the role of the interaction strength, since it depends on
the space-charge density along the linear extension of
the beam. Reverting to dimensional quantities, since
α2/2mσ2 has the dimensions of an energy, the two rele-
vant parameters are

E = β
α2

4mσ2
,

Nq20
2πǫ0L

= γ
α2

4mσ2
, (54)

which are respectively the energy of the individual parti-
cle embedded in the beam, and the strength of the space-
charge interaction.

In the following we will limit ourselves to discuss so-
lutions of Eqns. (49), and (50) without nodes (a sort of
ground state for the system). It is possible to see that
no solution without nodes can be found for values of the
space-charge strength γ beyond about 22.5 and that for
values of γ ranging from 0 to 22.5, the energy β decreases

5 10 15 20

0.5

1

1.5

2

b

g

FIG. 1: The energy β as a function of the space-charge
strength γ. Actually these quantities are dimensionless, mea-
sured in units of the energy α2/4mσ2

≈ 37.5 eV.

monotonically from 2.0000 to −0.0894. If the unit of ac-
tion α is fixed at a given value, it is apparent that the
value of γ is directly proportional to the charge per unit
length Nq0/L of the beam: a small value of γ means a
rarefied beam; a large value of γ indicates that the beam
is intense. A halo is supposed to be present in intense
beams, while in rarefied beams the behavior of every sin-
gle particle tends to be affected only by the external har-
monic potential.

It is useful to provide a numerical estimate (in MKS
units) of the relevant parameters. We are assuming a
beam made of protons, so that m and q0 are the pro-
ton mass and charge, while ǫ0 is the vacuum permittiv-
ity. The parameter σ is determined by the strength of
the external potential, and it is a measure of the trans-
verse size of the beam when no space charge is taken
into account, so that the ground state has the unper-
turbed form (52). From empirical data, a reasonable es-
timate yields σ ≈ 10−3 m. On the other hand the value
of N/L clearly depends on the particular beam we are
considering: usually a value of 1011 particles per meter
is considered realistic. As for the parameter α (15) we
have already suggested in Section I that its value can
be connected to the beam emittance. On the ground
of accepted experimental values of the beam emittance
(usually measured in units of length) we can assume
α/mc of the order of 10−7m. In fact, taking m, q0, σ,
and N/L fixed at the above-mentioned values, and as-
suming a space-charge strength γ moderately large, i.e.
2.0 ≤ γ ≤ 22.5, we can determine α from (54) and we
get 7.2 × 10−7 ≤ α/mc ≤ 1.3 × 10−7, a number which
is in good agreement with the experimentally measured
values of the beam emittance. From now on we will fix
α at its approximate central value:

α

mc
≈ 4.0 × 10−7 m . (55)

Since m and q0 have the proton values, and σ ≈ 10−3 m,
then the assigned values of the dimensionless parameters
γ and β will fix respectively, the values of N/L and E by
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FIG. 2: The radial distribution s w2(s) compared with the
distribution in absence of space charge (dashed line). The
space-charge strength is γ ≈ 11.2. All quantities are dimen-
sionless.
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FIG. 3: 3-dimensional view of the transverse distribution
w2(

√
x2 + y2) for a space-charge strength of γ ≈ 11.2.

Eqns. (54). This implies that by changing the beam in-
tensity (namely N/L and γ) one correspondingly changes
the energy (namely E and β) of the individual particle
embedded in the beam. In Fig. 1 we show the behavior
of β as a function of γ. The quantities β and γ are di-
mensionless: the true physical quantities (energies) are
obtained by multiplicating them by the unit of energy

α2

4mσ2
≈ 37.5 eV . (56)

The overall effect of the space charge in this model is
a conspicuous spreading of the transverse distribution of
the particles in the beam with respect to the unperturbed
ground state distribution (52). When γ = 0 the poten-
tial due to space charge vanishes, and the solution ex-
actly coincides with the ground state of the cylindrical
harmonic oscillator with variance σ2. When γ > 0 the
transverse distribution begins to spread, as we show in

1 2 3 4
- 0.2

0.2

0.4

0.6

0.8

s

s w2HsL

FIG. 4: The radial distribution sw2(s) compared with the
distribution in absence of space charge (dashed line). The
space-charge strength is γ ≈ 22.5. All quantities are dimen-
sionless.
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- 4
- 2
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4
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FIG. 5: 3-dimensional view of the transverse distribution
w2(

√
x2 + y2) for a space-charge strength of γ ≈ 22.5.

Figrs. 2 and 3 for a value of the space-charge strength
γ ≈ 11.2, and in Figrs. 4 and 5 for a value of the space-
charge strength γ ≈ 22.5. Notice that when comparing
distributions, the true radial (dimensionless) density is
sw2(s) and not just w2(s). Recall that w(s) is a normal-
ized solution of Eqns. (49) and (50). In Figrs. 6 and 7
we show the radial transverse form of the total poten-
tial, i.e. external plus space-charge given by the solution
v(s) of Eqs. (49) and (50), for the values γ = 11.2 and
γ = 22.5 of the space-charge strength. To give a more
quantitative measure of the flattening and broadening of
the transverse distribution we compare numerically the
probabilities of finding a particle at a relatively large dis-
tance from the beam longitudinal axis with and without
space charge. The quantity

Pγ(c) =

∫ ∞

c/
√

2

sw2(s) ds (57)
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FIG. 6: The total radial potential felt by a particle in the
beam compared with the harmonic potential (dashed line)
for a space charge strength of γ ≈ 11.2.
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FIG. 7: The total radial potential felt by a particle in the
beam compared with the harmonic potential (dashed line)
for a space charge strength of γ ≈ 22.5.

is the probability of finding a particle at a distance
greater than cσ for systems with a given strength γ of the
space charge coupling. For instance, considering the two
different situations γ = 0 (no space charge) and γ = 22.5
(strong space charge) we have:

P0(10) ≈ 1.9 × 10−22 , P22.5(10) ≈ 1.7 × 10−6 . (58)

We see that the probability of finding particles at a dis-
tance larger than 10σ from the core of the beam is en-
hanced by space charge by many orders of magnitude.
This means, for example, that if in the beam there are
1011 particles per meter, while practically no one is found
beyond 10σ in absence of space charge, for very strong
space-charge intensity we can find up to 105 particles per
meter at that distance from the core.

The above analysis shows that in the hydrodynamic-
stochastic theory of charged beams, the space-charge po-
tential induces a strong broadening of the unperturbed
transverse density distribution of the beam, thus yield-
ing a small, but finite probability of having particles at
a distance well away from the core of the beam.

The hydrodynamic-stochastic model allows also an es-
timate on the growth of the emittance due to the presence
of the space charge. The emittance can be calculated by
exploiting a structure of uncertainty products that is in-
herent to the SM. In particular, the transverse emittance
can be calculated as ∆x · ∆px, where we have:

∆x =
√
〈x2〉 − 〈x〉2 , ∆px =

√
〈p2

x〉 − 〈px〉2 . (59)

More explicitly: if w(s) is a solution of the coupled dy-
namical equations normalized in the sense that

∫ ∞

0

sw2(s) ds = 1 , (60)

the corresponding 3d probability density is

ρ(r, ϕ, z) = u2(r)H

(
L

2
− |z|

)
, (61)

where H(s) is the Heaviside function and

u(r) =
1√

4πLσ2
w

(
r

σ
√

2

)
. (62)

This probability density function is normalized since

∫ +∞

0

r dr

∫ 2π

0

dϕ

∫ ∞

−∞
dz ρ(r, ϕ, z) = 1 . (63)

It is easy to show that the first two moments are:

〈x〉 = 0 , 〈x2〉 = σ2

∫ ∞

0

s3w2(s) ds , (64)

so that the root mean square deviation for the position
is:

∆x =
√

〈x2〉 = σ

√∫ ∞

0

s3w2(s) ds . (65)

As for the momentum p, we recall that in SM one can-
not introduce a probability distribution directly in phase
space. The momentum can nevertheless be recovered
from the velocity field which is well defined in SM. Since
we are considering a stationary state, only the osmotic
part of the velocity field is non zero. Then the momen-
tum field reads

p(r) = α
∇ρ(r)
ρ(r)

= 2α
∇u(r)
u(r)

. (66)

As a consequence, the x-component of the momentum is

px = 2α
∂xu

u
= 2α

x

r

u′(r)

u(r)
= 2α cosϕ

u′(r)

u(r)
, (67)

and the first and second moments read

〈px〉 = 0 , 〈p2
x〉 =

α2

σ2

∫ ∞

0

w′2(s)s ds . (68)
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FIG. 8: The transverse dimensionless emittance ε vs. the
space-charge strength γ. The true dimensional emittance,
calculated as position–momentum uncertainty product, is just
E = εα.

Hence the root mean square deviation for the momentum
is:

∆px =
√
〈p2

x〉 =
α

σ

√∫ ∞

0

w′2(s)s ds . (69)

We can then define the emittance E as the position-
momentum uncertainty product in phase space in the
following way:

E = ∆x · ∆px = α

√∫ ∞

0

s3w2(s)ds ·
∫ ∞

0

w′2(s)sds.

(70)
The emittance (70) can be thus estimated from knowl-
edge of the numerical solutions w(s) and their first
derivatives w′(s). It can be seen that the emittance is
exactly α for γ = 0 (namely in absence of space charge),
and grows with γ to a value ≈ 1.2×α for γ ≈ 22.5. This
result is consistent with the expected growth of emittance
produced by space-charge effects. The dimensionless ra-
tio ε = E/α = ∆x · ∆px/α is plotted as a function of
γ in Fig. 8. This figure and the above discussion pro-
vide evidence that in the model of SM of charged beams
the constant α plays the role of a lower bound for the
phase-space emittance.

V. STATIONARY HALO DISTRIBUTIONS

The coupled nonlinear equations introduced in the pre-
vious Section allow to introduce and explain a possi-
ble mechanism of halo formation due to space-charge ef-
fects. This mechanism, when considering solutions with-
out nodes, amounts to the broadening of the transverse
density distribution of the beam away from the beam
core. This is a type of “continuous” halo. If we want
to investigate the formation and the properties of other
possible forms of halos – for example ring-like halos sep-
arated from the core by an almost void space region –

we should try to analyze the solutions with nodes of our
radial self-consistent equations. Being this a time con-
suming task, we resort for the time being to a different,
simplified approach to study the structure and properties
of beams of the ringed type.

Moreover, the scheme introduced in the previous Sec-
tion, although in principle very general, has the drawback
that it does not allow for analytical expressions of veloc-
ities and potentials, and therefore cannot suggest the en-
gineering of controlling external potentials to remove the
halo. To this end, in this Section we will develop a dif-
ferent approach, still based on SM, by considering some
preassigned density distributions for a beam with halo,
and then looking for the kind of dynamics that produces
them.

Firs of all we will determine the analytical forms w̃(s)
of the dimensionless radial distribution that can best ap-
proximate the numerical, self–consistent solutions w(s)
found in the previous Section. We will do that by choos-
ing a family of trial functions w̃(s) and by subsequently
minimizing the mean square error (m.s.e.) with respect
to a given solution w(s). Since the radial component of
the cylindrically symmetric (l = 0) solutions of the har-
monic oscillator (B1) contain only even powers of the ra-
dial coordinate (see Appendix B), we take as normalized
trial functions

w̃(s) =
e−s2/2σ2

√
c

(1 + as2 + bs4) (71)

with σ, a and b as free parameters, and

c =

∫ ∞

0

e−s2/σ2

(1 + as2 + bs4)2s ds

=
σ2

2
+ aσ4 + (a2 + 2b)σ6 + 6abσ8 + 12b2σ10 (72)

as normalization constant. We then take one numerical
solution w(s) of (49) and (50) for a given value of γ and
consider the mean square error

J =

∫ ∞

0

|w(s) − w̃(s)|2s ds , (73)

and numerically minimize its value by varying the pa-
rameters σ, a and b. As an example, for γ ≈ 19.3, we get

σ ≈ 1.81 ; a ≈ 0.28 ; b ≈ 0.01 ; c ≈ 5.09 . (74)

The corresponding density distribution (solid line) is
compared in Fig. 9 with the density distribution obtained
by numerically solving the system (49) and (50) (dashed
line). From this explicit form of the approximating w̃(s)
we can now also calculate the expression of the station-
ary potential which controls the state. From Eq. (37) in
the case of a cylindrically symmetric approximating state
with

ũ(r) =
√
ρ̃(r) , (75)
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FIG. 9: The best approximation in mean square (solid line) of
a numerical solution for the self-consistent equations (dashed
line) for trial functions of the form (71) with γ ≈ 19.3.

we have the controlling potential

Ṽ (r) = Ẽ +
α2

2m

[
ũ ′′(r)

ũ(r)
+

1

r

ũ ′(r)

ũ(r)

]
. (76)

Introducing the usual dimensionless quantities

s =
r

σ
√

2
, β̃ =

4mσ2

α2
Ẽ ; w̃(s) = σ3/2ũ(r) , (77)

we may define the dimensionless controlling potential

ṽ(s) = ṽ

(
r

σ
√

2

)
≡ 4mσ2

α2
Ṽ (r)

= β̃ +
w̃ ′′(s)

w̃(s)
+

1

s

w̃ ′(s)

w̃(s)
. (78)

For an approximating amplitude of the form (71), and
with the same values (74) of the parameters, the control-
ling potential reads

ṽ(s) =
0.442 − 0.629s2 + 0.062s4 − 0.001s6

1 + 0.284s2 − 0.011s4
. (79)

This potential is shown (solid line) in Fig. 10, where it
is compared with the potential s2 + v(s) (dashed line)
solution of Eqns. (49) and (50).

The analytical approximations show a small, but rel-
evant, difference with respect to the numerical solutions
of Eqns. (49) and (50): w̃(s) has a node at about s ≈ 5.4,
and correspondingly the potential ṽ(s) has a singularity
at that point (out of the s range of Fig. 10). Instead, the
numerical solutions w(s) and v(s) of Eqns. (49) and (50)
show no such behavior. For values of s beyond s ≈ 5.4,
w̃(s) shows a small bump, not visible in Fig. 9 because
of the large scale. We show a zoom-up of it in Fig. 11,
where the node is now clearly visible. This is a feature
that we will find as well in other different approaches to
the description of the beam distribution, and that could
be tentatively connected with the presence of a halo spa-
tially separated from the core of the beam.
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FIG. 10: The control potential (solid line) obtained from the
best mean square approximation w̃(s) to a numerical solution
for the self–consistent equations (49) and (50), for trial func-
tions of the form (71) with γ = 19.3. It is compared with
the potential s2 + v(s) (dashed line) obtained as numerical
solution of (49) and (50).
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FIG. 11: Blown up picture of Fig. 9 that shows the existence
of a node in the position density distribution at s ≈ 5.4.

In our quest for an analytic description of the halo
distribution we now depart from the scheme of the self-
consistent nonlinear equations (49) and (50). Instead,
while still assuming the space charge as the dominant
factor, we introduce a simplified analytical model for the
halo production. As a first simplification, valid for small
values of the space–charge strength γ, we assume a frozen
core for the beam. A frozen core is such that it produces
a space-charge effect, induces a spreading of the density
distribution, and is left unchanged by this spreading. In
this case the potential produced by the charge distribu-
tion is a priori given by the distribution of the frozen
core and it simply enters linearly in the phenomenolog-
ical Schrödinger equation (16). As a consequence, the
latter is now decoupled from the Maxwell equations for
the electromagnetic field. The frozen charge distribution
will be assumed cylindrically symmetric and transver-
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sally Gaussian:

Q(r) = Nq0
e−(x2+y2)/2σ2

2πσ2

1

L
H

(
L

2
− |z|

)
, (80)

where N is the number of particles with elementary
charge q0, L is the longitudinal extension of the beam,
and H(·) denotes the Heaviside function. The cylindri-
cal symmetry allows to determine via Gauss theorem the
potential energy Vsc(r) of a test particle of charge q0 em-
bedded in this charge distribution. It is a simple exercise
to show that

Vsc(r) =
Nq20

2πǫ0L

[
Ei

(
− r2

2σ2

)
− ln

r2

2σ2
− C

]
, (81)

where C ≈ 0.577 is the Euler constant, and

Ei(x) =

∫ x

−∞

et

t
dt (82)

is the exponential–integral function. If we suppose that
the test particle is acted upon by this space-charge poten-
tial, and by the external, cylindrical harmonic oscillator
potential (B1) – which, without space charge, would keep
the particle in the Gaussian state with variance σ2 – the
total potential to be inserted in the Schrödinger equation
(16) reads

V (r) =
α2

8mσ4
r2

+
Nq20

2πǫ0L

[
Ei

(
− r2

2σ2

)
− ln

r2

2σ2
− C

]
.(83)

In terms of the usual dimensionless quantities we can also
write

s =
r

σ
√

2
, γ =

4mσ2

α2

Nq20
2πǫ0L

v(s) = v

(
r

σ
√

2

)
≡ 4mσ2

α2
V (r)

= s2 + γ[ Ei(−s2) − ln s2 − C ] (84)

A plot of the dimensionless potential v(s) for γ = 3 is
shown in Fig. 12.

For stationary solutions of the form

ψ(r, t) = u(r) e−iEt/α , (85)

Eq. (16) becomes

E u(r) = Ĥ u(r) = − α2

2m
∇2u(r) + V (r)u(r) , (86)

and due to the cylindrical symmetry of V it reduces to

E u(r) = − α2

2m

[
u′′(r) +

u′(r)

r

]
+ V (r)u(r) . (87)
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FIG. 12: The dimensionless space-charge potential v(s) pro-
duced by a frozen, cylindrically symmetric beam distribution
with γ = 3.

Considering the dimensionless quantities

β =
4mσ2

α2
E , w(s) = w

(
r

σ
√

2

)
≡ σ3/2u(r) (88)

we finally obtain the reduced equation

βw(s) = −w′′(s) − w′(s)

s
+ v(s)w(s) . (89)

Despite its simple graphical behavior displayed in Fig. 12
the potential v(s) is complicated enough to bar the hope
of exactly solving Eq. (89) in a simple way. Reasonable
approximate solutions can be obtained by means of the
variational method of Rayleigh and Ritz. We thus look
for the minimum of the average energy

(u, Ĥ u)

(u, u)
, (90)

whose reduced and dimensionless form is
∫ ∞
0 [−w(s)w′′(s)s− w(s)w′(s) + v(s)w2(s)s]ds∫ ∞

0
w2(s)sds

. (91)

The minimization can be carried out for different values
of the coupling parameter γ, but the frozen core model
is realistic only for small values of γ: a strong coupling
with a frozen core would have the paradoxical effect of
totally expelling the distribution function of the test par-
ticle from the center of the beam, while keeping the Gaus-
sian core always concentrated in the center. To elaborate
an example we have chosen γ = 3 and a test function of
the form

w(s) =
e−s2/2σ2

√
c

(1 + as2 + bs4) . (92)

The values of the parameters that minimize the energy
functional turn out to be

σ = 1.24 ; a = 0.63 ; b = 0.03 ; c = 2.92 . (93)
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FIG. 13: The variational approximation to the density dis-
tribution produced by the space charge of a frozen core with
γ = 3 (solid line). It is compared with the Gaussian solution
(dashed line) corresponding to the case of a purely harmonic
potential (γ = 0).
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FIG. 14: Zoom up of Fig. 13 that shows a node in the position
density distribution at s ≈ 4.7.

The corresponding optimal radial density distribution
sŵ 2(s) is shown in Fig. 13 where it is also compared with
the Gaussian solution (dashed line) corresponding to the
case of a purely harmonic potential (γ = 0). Notice that
this density distribution has a form similar to that of the
self–consistent solutions elaborated in Section IV for val-
ues of γ of about 10 (see Fig. 2). It has a node which is
not visible in Fig. 13. We zoom up its plot in Fig. 14.
This behavior suggests that the halo distribution could
be described, in first approximation, as a Gaussian core
distribution plus a small ring of particles surrounding it
and constituting the halo. Thus, in the following we will
simply assume a specific form of a beam with a halo with-
out deriving it as an effect of space charge interactions.
Since it is not clearly established that a halo can be due
only to space-charge effects, starting with a realistic ring
distribution and trying to understand the dynamics that
can produce it could be very useful in this respect. The
techniques introduced in Section III will be instrumental
to this end. For a three-dimensional, cylindrically sym-

metric beam we introduce the normalized radial density
distribution

ρ(r) = A
e−r2/2σ2

σ2

+(1 −A)
e−r2/2p2σ2

p2σ2Γ(q + 1)

(
r2

2p2σ2

)q

(94)

which is composed of a Gaussian core with variance σ2

(the simple harmonic oscillator ground state), plus a ring-
like distribution whose size is fixed through the two pa-
rameters p > 0 and q ≥ 0. The parameter 0 ≤ A ≤ 1
is the relative weight of the two parts. This density dis-
tribution has the required form for suitable values of the
parameters, but, at variance with the two previous exam-
ples of approximate distributions (see Figs. 11 and 14),
it has no nodes. This is convenient for two main rea-
sons: first because it is a rather general requirement for
a ground state to have no nodes (this fact is a rigorous
theorem for one-dimensional systems). Moreover, it has
been shown in Refs. [30, 32, 33] that stationary distri-
butions without nodes are also attractors for every other
possible (non extremal) initial distribution: a property
that will be useful in a future discussion of the possi-
ble relaxation of the system toward a stable beam halo.
For this cylindrically symmetric case the expressions (30)
and (37) for the velocity field and the potential become

u(r) =
√
ρ(r) ,

v(+)(r) =
α

m

u′(r)

u(r)
,

V (r) =
α2

2mσ2
+
α2

2m

(
u′′(r)

u(r)
+

1

r

u′(r)

u(r)

)
. (95)

Moving to dimensionless quantities we have

s =
r

σ
√

2
,

w2(s) = w2

(
r

σ
√

2

)
= 2σ2ρ(r)

= 2Ae−s2

+ 2(1 −A)
e−s2/p2

p2Γ(q + 1)

(
s2

p2

)q

,

b(s) = b

(
r

σ
√

2

)
=
mσ

√
2

α
v(+)(r) =

w′(s)

w(s)
,

v(s) = v

(
r

σ
√

2

)
=

4mσ2

α2
V (r)

= 2 +
w′′(s)

w(s)
+

1

s

w′(s)

w(s)
(96)

A three-dimensional plot of the dimensionless density dis-
tribution is given in Fig. 15 where we have chosen p = 1,
q = 24 and A ≈ 0.49. In this example the importance
of the halo ring has been exaggerated with respect to
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FIG. 15: Plot of the cylindrically symmetric density distri-
bution of the beam w2(

√
x2 + y2) given by Eq. (96), which

shows a halo ring surrounding the beam core.
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FIG. 16: The radial, dimensionless, forward velocity field for
the distribution of Fig. 15 (solid line), and for the ground
state of a harmonic oscillator (dashed line).

the real case in order to make the effect clearly visi-
ble. The explicit analytic expression of b(s) and v(s) is
rather lengthy and not particularly illuminating: we sim-
ply show the behavior of these functions, for the same
values of the parameter for the previous example, re-
spectively in Fig. 16 and Fig. 17, where they are also
compared with the corresponding dimensionless quanti-
ties (−s and s2) for the ground state of the harmonic
oscillator. The function v(s) is the potential that in the
stochastic model keeps the beam in the stationary state
with a halo ring.

In order to illustrate the main effects involved, let us
give here the simpler formulae relative to the 1d case.
From now on we will consider only 1d processes denot-
ing by x one of the transverse space coordinates. We
assume that the longitudinal and the transverse beam
dynamics can be deemed independent, with the further

1 2 3 4 5 6 7
- 10

10

20

30

40

50

s

s2

vHsL

FIG. 17: The radial, dimensionless, potential for the distri-
bution of Figure 15 (solid line), and for a harmonic oscillator
(dashed line).

simplification of considering decoupled evolutions along
the transverse directions x and y. Under these conditions
the density distribution with a halo ring now reads

ρ(x) = A
e−x2/2σ2

σ
√

2π

+(1 −A)
e−x2/2p2σ2

p σ
√

2Γ
(
q + 1

2

)
(

x2

2p2σ2

)q

(97)

so that the corresponding velocities and potential are

u(x) =
√
ρ(x) ,

v(+)(x) =
α

m

u′(x)

u(x)
,

V (x) =
α2

4mσ2
+
α2

2m

u′′(x)

u(x)
. (98)

In terms of dimensionless quantities we then have for the
distribution

s =
x

σ
√

2

w2(s) = w2

(
x

σ
√

2

)
= 2σ2ρ(x)

= A
e−s2

√
π

+ (1 −A)
e−s2/p2

pΓ
(
q + 1

2

)
(
s2

p2

)q

(99)

while the forward velocity and the potential are

b(s) = b

(
x

σ
√

2

)
=
mσ

√
2

α
v(+)(x) =

w′(s)

w(s)
, (100)

v(s) = v

(
x

σ
√

2

)
=

4mσ2

α2
V (x) = 1 +

w′′(s)

w(s)
.(101)

In Figrs. 18, 19, and 20 we respectively show the density
distribution, the velocity field, and the potential for p =
1, q = 24 and A = 0.85. As in the three-dimensional case,
the importance of the halo ring has been exaggerated
with respect to the real case in order to make the effect
clearly visible.



16

- 6 - 4 - 2 2 4 6

0.1

0.2

0.3

0.4

s

FIG. 18: Plot of the 1d density distribution (97) with a halo
ring surrounding the beam core.
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FIG. 19: The dimensionless velocity for the 1d distribution of
Figure 18 (solid line), and for a harmonic oscillator (dashed
line).
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FIG. 20: The dimensionless potential for the 1d distribution
of Figure 18 (solid line), and for a harmonic oscillator (dashed
line).

VI. CONCLUSIONS

In this paper we have presented a dynamical, stochas-
tic approach to the description of the beam transverse
distribution in the particle accelerators. In the first part
we have described the collective beam dynamics in terms
of time–reversal invariant diffusion processes (Nelson pro-
cesses) which are obtained by a stochastic extension of
the least action principle of classical mechanics. The dif-
fusion coefficient of the process is identified with a lower
bound for the emittance of the beam as discussed in the
Section IV. The collective dynamics of beams is then de-
scribed by two nonlinearly coupled hydrodynamic equa-
tions. This set of equations shows some formal analogies
with the effective Ginzburg-Landau and Gross-Pitaevskii
descriptions of the collective dynamics of self-interacting
quantum many body systems in terms of classical, non-
linear Schrödinger equation. We have shown that, in
the framework of SM, it is possible to have transverse
distribution which show a broadening and an emittance
growth, typical of the halo formation. The interest of this
approach lies in the fact that its dynamical equations al-
low us, at least in principle, to determine the possible
control potentials that are responsible for the stationar-
ity of the halo. A few introductory examples of these
potentials and distributions have been discussed in the
section V. The controlling potentials can be engineered
by suitable tuning of the external electromagnetic fields.
In a previous paper [20] we have considered evolutions
that drive the beam from a less collimated to a better
collimated state, and we have furthermore shown that
this goal can also be achieved without increasing the fre-
quency of the betatron oscillations which can in fact be
independently controlled during the evolution. In forth-
coming papers we plan to elaborate on the extension of
these techniques to the problem of engineering suitable
time-dependent potentials for the control and the elimi-
nation of the beam halo. In particular, it will be shown
that the transition functions of the Nelson processes can
be exploited to control these evolutions. We also plan to
extend the analysis of the present paper to different, non
Gaussian beam transverse distributions which could bet-
ter describe the existence of halo losses in terms of large
ratios of the maximum displacement to the RMS size of
the beam.

APPENDIX A: COUPLED FIELD EQUATIONS

Starting from the Maxwell equations for the space-charge
field felt by our particle in the beam

∇ · Esc(r, t) =
ρsc(r, t)

ǫ0
∇× Esc(r, t) = − ∂tBsc(r, t)

∇ ·Bsc(r, t) = 0

∇× Bsc(r, t) = µ0jsc(r, t) +
∂tEsc(r, t)

c2
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and introducing the corresponding electro–magnetic po-
tentials (Asc,Φsc) from

Bsc(r, t) = ∇× Asc(r, t)

Esc(r, t) = −∂tAsc(r, t) −∇Φsc(r, t)

with the gauge condition

∇ ·Asc(r, t) +
1

c2
∂tΦsc(r, t) = 0 , (A1)

through the usual procedure we get the wave equations

∇2Asc(r, t) −
1

c2
∂2

t Asc(r, t) = −µ0jsc(r, t) (A2)

∇2Φsc(r, t) −
1

c2
∂2

t Φsc(r, t) = −ρsc(r, t)

ǫ0
(A3)

It is also well known (see for example [16], chapter XV)
that the Schrödinger equation for spinless, charged par-
ticles in an electro–magnetic field (A,Φ) is

iα∂tψ =

[
1

2m
(iα∇− q0

c
A)2 + q0Φ

]
ψ .

For a charged particle in the beam the electro–magnetic
field is the superposition of the space-charge po-
tential (Asc,Φsc) plus an external, control potential
(Aext,Φext), and hence we obtain the Schrödinger equa-
tion (43) that we rewrite here for convenience:

iα∂tψ =
1

2m

[
iα∇− q0

c
(Asc + Aext)

]2

ψ

+q0(Φsc + Φext)ψ . (A4)

It is apparent now that (A1), (A2), (A3) and (A4) con-
stitute a self–consistent system of coupled, non linear dif-
ferential equations for the fields ψ, Asc and Φsc.

Since we are in a reference frame comoving with the
beam, in the following we will suppose to deal only with
stationary wave functions of the form (42). In this case,
as already remarked, we get jsc = 0, so that we can
take the trivial solution Asc = 0 of (A2). The gauge
condition (A1) then implies that ∂tΦsc = 0 and the wave
equation (A3) reduces itself to the Poisson equation for
the electrostatic potential. Finally, by supposing also
Aext = 0, our system is reduced to only two coupled,
non linear equations for the couple (u,Φsc), namely

Eu = − α2

2m
∇2u+ q0(Φext + Φsc)u

∇2Φsc = −Nq0
ǫ0

|u|2
‖u‖2

where we have defined

‖u‖2 =

∫

R3

|u(r, t)|2 d3r .

Then if we pass to the potential energies by putting

Vext(r, t) = q0Φext(r, t) , Vsc(r, t) = q0Φsc(r, t)

our equations are reduced to

α2

2m
∇2u+ (E − Vext − Vsc)u = 0 , (A5)

∇2Vsc = −Nq
2
0

ǫ0

|u|2
‖u‖2

. (A6)

Remark that here the wave functions ψ and u, while cer-
tainly normalizable, are not supposed in general to be al-
ready normalized. However the equations (A5) and (A6),
albeit non linear, are apparently invariant for the mul-
tiplication of u by an arbitrary constant. The equa-
tions (A5) and (A6) will be used in the Section IV.

APPENDIX B: CYLINDRICAL HARMONIC

OSCILLATOR

In the model discussed in this paper we suppose that
the external potential Ve is a cylindrically symmetric,
harmonic potential with a proper frequency ω, so that
the ground state without space-charge interaction will
have a variance

σ2 =
α

2mω
.

This means that, in the usual cylindrical coordinates

{r, ϕ, z} with r =
√
x2 + y2, we have

Ve(r) =
m

2
ω2r2 =

α2

8mσ4
r2 (B1)

and the corresponding Schrödinger equation

iα∂tψ = − α2

2m
∇2ψ + Veψ

= − α2

2m

[
1

r
∂r(r∂r) +

1

r2
∂2

ϕ + ∂2
z

]
ψ + Veψ

with periodic conditions at z = ±L/2 (for a bunch of
length L) has the eigenvalues

Enk = (n+ 1)αω + k2

(
2πσ

L

)2

αω

and the normalized eigenfunctions

ψnkl(r, ϕ, z, t) = Rnl(r)Φl(ϕ)Zk(z) e−iEnkt/α

with

Rnl(r) =

√(
n−l
2

)
!(

n+l
2

)
!

e−r2/4σ2

σ

(
r

σ
√

2

)l

L
(l)
n−l

2

(
r2

2σ2

)

Φl(ϕ) =
eilϕ

√
2π

Zk(z) =
ei2kπz/L

√
L
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where L
(q)
p (x) are the generalized Laguerre polynomials

and

n = 0, 1, 2, . . .

l =

{
0, 2, 4, . . . , n if n even
1, 3, 5, . . . , n if n odd

k = 0,±1,±2, . . .

We suppose that, by neglecting the space-charge inter-
action and in a comoving frame of reference, the system
will be correctly described by the ground state

ψ000(r) =
e−r2/4σ2

σ
√

2πL
(B2)

associated to the eigenvalue E00 = αω.
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