707 research outputs found

    Boosting jet power in black hole spacetimes

    Full text link
    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure

    Coherent Ro-vibrational Revivals in a Thermal Molecular Ensemble

    Full text link
    We report an experimental and theoretical study of the evolution of vibrational coherence in a thermal ensemble of nitrogen molecules. Rotational dephasing and rephasing of the vibrational coherence is detected by coherent anti-Stokes Raman scattering. The existence of ro-vibrational coupling and the discrete energy spectrum of the rotational bath lead to a whole new class of full and fractional ro-vibrational revivals. Following the rich ro-vibrational dynamics on a nanosecond time scale with sub-picosecond time resolution enables us to determine the second-order ro-vibrational constant gammaegamma_e and assess new possibilities of controlling decoherence.Comment: submitted at Physical Review

    Operationally Invariant Measure of the Distance between Quantum States by Complementary Measurements

    Full text link
    We propose an operational measure of distance of two quantum states, which conversely tells us their closeness. This is defined as a sum of differences in partial knowledge over a complete set of mutually complementary measurements for the two states. It is shown that the measure is operationally invariant and it is equivalent to the Hilbert-Schmidt distance. The operational measure of distance provides a remarkable interpretation of the information distance between quantum states.Comment: 4 page

    WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics

    Get PDF
    The accurate modelling of astrophysical scenarios involving compact objects and magnetic fields, such as the collapse of rotating magnetized stars to black holes or the phenomenology of gamma-ray bursts, requires the solution of the Einstein equations together with those of general-relativistic magnetohydrodynamics. We present a new numerical code developed to solve the full set of general-relativistic magnetohydrodynamics equations in a dynamical and arbitrary spacetime with high-resolution shock-capturing techniques on domains with adaptive mesh refinements. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code and assess its accuracy. Such tests range from the solution of relativistic Riemann problems in flat spacetime, over to the stationary accretion onto a Schwarzschild black hole and up to the evolution of oscillating magnetized stars in equilibrium and constructed as consistent solutions of the coupled Einstein-Maxwell equations.Comment: minor changes to match the published versio

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table

    The Globular Cluster System in the Inner Region of M87

    Get PDF
    1057 globular cluster candidates have been identified in a WFPC2 image of the inner region of M87. The Globular Cluster Luminosity Function (GCLF) can be well fit by a Gaussian profile with a mean value of m_V^0=23.67 +/- 0.07 mag and sigma=1.39 +/- 0.06 mag (compared to m_V^0=23.74 mag and sigma=1.44 mag from an earlier study using the same data by Whitmore it et al. 1995). The GCLF in five radial bins is found to be statistically the same at all points, showing no clear evidence of dynamical destruction processes based on the luminosity function (LF), in contradiction to the claim by Gnedin (1997). Similarly, there is no obvious correlation between the half light radius of the clusters and the galactocentric distance. The core radius of the globular cluster density distribution is R_c=56'', considerably larger than the core of the stellar component (R_c=6.8''). The mean color of the cluster candidates is V-I=1.09 mag which corresponds to an average metallicity of Fe/H = -0.74 dex. The color distribution is bimodal everywhere, with a blue peak at V-I=0.95 mag and a red peak at V-I=1.20 mag. The red population is only 0.1 magnitude bluer than the underlying galaxy, indicating that these clusters formed late in the metal enrichment history of the galaxy and were possibly created in a burst of star/cluster formation 3-6 Gyr after the blue population. We also find that both the red and the blue cluster distributions have a more elliptical shape (Hubble type E3.5) than the nearly spherical galaxy. The average half light radius of the clusters is ~2.5 pc which is comparable to the 3 pc average effective radius of the Milky Way clusters, though the red candidates are ~20% smaller than the blue ones.Comment: 40 pages, 17 figures, 4 tables, latex, accepted for publication in the Ap

    Simulating binary neutron stars: dynamics and gravitational waves

    Full text link
    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \had computational infrastructure for distributed adaptive mesh refinement.Comment: 14 pages, 16 figures. Added one figure from previous version; corrected typo

    DECam integration tests on telescope simulator

    Full text link
    The Dark Energy Survey (DES) is a next generation optical survey aimed at measuring the expansion history of the universe using four probes: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted at the Blanco 4-meter telescope at the Cerro Tololo Inter- American Observatory. DES will survey 5000 square degrees of the southern galactic cap in 5 filters (g, r, i, z, Y). DECam will be comprised of 74 250 micron thick fully depleted CCDs: 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. Construction of DECam is nearing completion. In order to verify that the camera meets technical specifications for DES and to reduce the time required to commission the instrument, we have constructed a full sized telescope simulator and performed full system testing and integration prior to shipping. To complete this comprehensive test phase we have simulated a DES observing run in which we have collected 4 nights worth of data. We report on the results of these unique tests performed for the DECam and its impact on the experiments progress.Comment: Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011). To appear in Physics Procedia. 8 pages, 3 figure

    Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity

    Full text link
    A stability criterion is derived in general relativity for self-similar solutions with a scalar field and those with a stiff fluid, which is a perfect fluid with the equation of state P=ρP=\rho. A wide class of self-similar solutions turn out to be unstable against kink mode perturbation. According to the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be a critical solution for the spherical collapse of a stiff fluid if we allow sufficiently small discontinuity in the density gradient field in the initial data sets. The self-similar scalar-field solution, which was recently found numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19} 6359), is also unstable. Both the flat Friedmann universe with a scalar field and that with a stiff fluid suffer from kink instability at the particle horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity, typos correcte
    corecore