555 research outputs found

    Thermodynamics of explosions

    Get PDF
    We present our first attempts to formulate a thermodynamics-like description of explosions. The motivation is partly a fundamental interest in non-equilibrium statistical physics, partly the resemblance of an explosion to the late stages of a heavy-ion collision. We perform numerical simulations on a microscopic model of interacting billiard-ball like particles, and we analyse the results of such simulations trying to identify collective variables describing the degree of equilibrium during the explosion.Comment: 6 pages. Talk presented at "Bologna 2000 - Structure of the nucleus" international conference, May 29 - June 3, Bologna, Italy. Shortened version, to appear in the Proceeding

    Equilibration and freeze-out in an exploding system

    Full text link
    We use a simple gas model to study non-equilibrium aspects of the multiparticle dynamics relevant to heavy ion collisions. By performing numerical simulations for various initial conditions we identify several characteristic features of the fast dynamics occurring in implosion-explosion like processes.Comment: 4 pages, submitted to PR

    The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Get PDF
    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given

    The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Get PDF
    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given

    Soft versus Hard Dynamics for Field-driven Solid-on-Solid Interfaces

    Full text link
    Analytical arguments and dynamic Monte Carlo simulations show that the microstructure of field-driven Solid-on-Solid interfaces depends strongly on the dynamics. For nonconservative dynamics with transition rates that factorize into parts dependent only on the changes in interaction energy and field energy, respectively (soft dynamics), the intrinsic interface width is field-independent. For non-factorizing rates, such as the standard Glauber and Metropolis algorithms (hard dynamics), it increases with the field. Consequences for the interface velocity and its anisotropy are discussed.Comment: 9 pages LaTex with imbedded .eps figs. Minor revision

    Kapital- og vækstforhold af betydning for iværksætteraktiviteter inden for vidensintensive sektorer

    Get PDF
    Økonomisk vækst er afhængig af tilstedeværelsen af et innovativt og dynamisk erhvervsliv herunder af evnen til at opdage og udnytte nye forretningsmuligheder. En bedre forståelse af iværksætterne og det grundlag, som de starter virksomhed på, har en central betydning i denne sammenhæng, da de normalt er nøgleaktørerne i forbindelse med erkendelsen og udnyttelse af nye muligheder. Denne artikel belyser indflydelsen af forskellige kapitalgrundlag på iværksætteraktiviteterne inden for vidensintensive sektorer og aspekter omkring vækst

    Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    Get PDF
    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process)
    corecore