208 research outputs found

    Facial visualizations of women’s voices suggest a cross-modality preference for femininity

    Get PDF
    Women with higher-pitched voices and more feminine facial features are commonly judged as being more attractive than are women with lower-pitched voices and less feminine faces, possibly because both features are affected by (age-related) variations in endocrine status. These results are primarily derived from investigations of perceptions of variations in single-modality stimuli (i.e., faces or voices) in samples of young adult women. In the present study we sought to test whether male and female perceptions of women’s voices affect visual representations of facial femininity. Eighty men and women judged voice recordings of 10 young girls (11-15 years), 10 adult women (19-28 years) and 10 peri-/post-menopausal women (50-64 years) on age, attractiveness, and femininity. Another 80 men and women were asked to indicate the face they think each voice corresponded to using a video that gradually changed from a masculine looking male face into a feminine looking female face. Both male and female participants perceived voices of young girls and adult women to be significantly younger, more attractive and feminine than those of peri-/post-menopausal women. Hearing young girls’ and adult women’s voices resulted in both men and women selecting faces that differed markedly in apparent femininity from those associated with peri-/post-menopausal women’s voices. Voices of young girls had the strongest effect on visualizations of facial femininity. Our results suggest a cross-modal preference for women’s vocal and facial femininity, which depends on female age and is independent of the perceiver’s sex

    Friendly societies in the rural East Riding, 1830-1912

    Get PDF
    Local and affiliated order friendly societies which together formed the largest working-class movement in   Victorian Britain have been  largely ignored by social and labour historians. Oddfellows, Foresters, Druids,  Shepherds and Gardeners with their ritual, regalia, and secrecy imitative of Freemasonry, emerged as benefit  societies in industrial Yorkshire and Lancashire in the second and third decades of the nineteenth century. The  orders exploded into the East Riding in the wake of the passing of the New Poor Law in 1834 and its  implementation three years later but many branches suffered severe set-backs or extinction during the  economic crisis which hit agriculture in 1848-52. A substantial number of those that survived, many of them well into the twentieth century, chose independence rather than the authoritarian rule of a national headquarters.Affiliated branches far from being the preserve of the urban artisan, as has been often suggested, had an  extensive agricultural worker membership. The founders and leaders of branches, which were most commonly  located in larger open settlements with a substantial nonconformist and artisan population, were drawn from all  sections of the membership but village craftsmen predominated. The club anniversary which became the  principal feast day for many villages was initially, along with public house meetings and funeral ritual, much  criticised by Anglican clergy. They found, however, that their annual sermon and attendance at the dinner gave  them their principal point of contact with the rural working-class, a fact also realised after 1885 by politicians. The sickness and funeral benefits provided by the orders were considerable in relation to agricultural workers'  incomes in the mid-19th century but higher wages and the passing of the National Insurance Act in 1912  considerably decreased their significance to the rural community

    Mantle-derived trace element variability in olivines and their melt inclusions

    Get PDF
    Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.</p

    Clinopyroxene Dissolution Records Rapid Magma Ascent

    Get PDF
    Magma ascent rates control volcanic eruption styles. However, the rates at which basaltic magmas ascend through the crust remain highly uncertain. Although recent studies have successfully exploited records of decompression driven degassing to estimate the rates at which H2O-rich basalts ascend, such approaches cannot readily be applied to primitive and H2O-poor basalts that erupt in ocean island and mid-ocean ridge settings. Here we present magma ascent rates obtained by modeling the dissolution of clinopyroxene crystals in a wehrlitic nodule from the primitive Borgarhraun lava flow in North Iceland. High-Al2O3 clinopyroxene core compositions are consistent with crystallization near the Moho (~800 MPa), whereas low-Al2O3 clinopyroxene rims and inclusion compositions are consistent with crystallization at or near the surface. We interpret low-Al2O3 rims and inclusions as the crystallized remnants of boundary layers formed by the dissolution of high-Al2O3 clinopyroxene during magma ascent. By combining characteristic rim dissolution lengths of 50–100 μm with published experimental calibrations of clinopyroxene dissolution behavior, we estimate that the Borgarhraun magma most likely decompressed and ascended at rates of 3.0–15 kPa.s−1 and 0.11–0.53 m.s−1, respectively. These rates are slightly faster than published estimates obtained by modeling the diffusive re-equilibration of olivine crystals, suggesting that the Borgarhraun magma either accelerated upwards or that it stalled briefly at depth prior to final ascent. Comparisons with other basaltic eruptions indicate that the H2O-poor magma that fed the dominantly effusive Borgarhraun eruption ascended at a similar rate to some H2O-rich magmas that have fed explosive eruptions in arc settings. Thus, magma ascent rates do not appear to correlate simply with magma H2O contents. Overall, our findings confirm that primitive and H2O-poor basalts can traverse the crust within days, and may erupt with little precursory warning of magma ascent

    Dynamic and thermal control of an electromagnetic formation flight testbed

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.Includes bibliographical references (p. 141).Formation flight of multiple spacecraft is an emerging method for completing complex space missions in an efficient manner. A limitation found in maintaining such formations is the need for precise control at all times. Using traditional thruster propulsion systems can be costly and life-limiting since the propellant is consumed during the mission. An alternative method for providing this relative position control is to use electromagnetic interaction between the vehicles of the formation to provide forces and torques. This method uses electricity alone, which is a renewable resource in space, to provide all actuation to control the formation. The Space Systems Laboratory at MIT is developing this concept with a project called Electromagnetic Formation Flight (EMFF). A two-dimensional testbed has been developed to demonstrate the ability to control vehicle position and attitude using only electromagnetic forces and reaction wheels. A thorough description of this system is given, focusing on the development of its thermal and dynamic control. Innovations to the thermal system, used to cool the superconducting wire of the electromagnet, are described. All systems involved with dynamic control of an EMFF vehicle are identified and the methods used to develop control algorithms are explained. Simulations demonstrating the stability achieved by these controllers are presented and successful experimental results from the testbed are examined. Finally, the test results are used to refine the parameters used in the simulation and a more accurate dynamic model of the system is determined.by Matthew D. Neave.S.M

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–1784 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An78–An92, Mg#cpx = 82–87, Fo79.5–Fo87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An60–An68, Mg#cpx = 71–78, Fo70–Fo76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Ybmelt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Ybmelt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high-field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal–melt equilibration within the evolved assemblage occurred at ~1140 °C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300 °C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene–melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene–melt equilibria return mid-crustal pressures of 4 ± 1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral–melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range
    • …
    corecore