2,060 research outputs found

    Patient Compliance with Colorectal Cancer Screening: A Scoping Review

    Get PDF
    Purpose/Background Colorectal cancer (CRC) is a leading cause of cancer deaths for women and men. Routine screening based on current national guidelines can decrease morbidity and mortality. Unfortunately, patient compliance with CRC screening remains low. This scoping review will evaluate the literature and examine the association between colorectal cancer screening modality and patient compliance. Methods Individual searches within PubMed, EBSCO, and Medline were completed using MeSh with the following key words: colorectal cancer screening, patient compliance, stool-based screening, direct visualization, and others. A literature review was completed for 10 critically appraised articles published between 2010 and 2020. The association of the modality of CRC screening, patient compliance, and patient education was assessed and compared. A summary evaluation table was composed to determine the associations between CRC screening and patient compliance. Results The articles included consisted of four systematic reviews/meta-analysis, three randomized controlled trials, one controlled trial without randomization, and two cohort/case-control studies. Of the study sample (N=10), all but one demonstrated statistically significant findings concerning patient education, CRC screening, and compliance. Noninvasive stool-based studies have a higher patient compliance rate than direct visualization tests. Direct visualization tests offer same-session detection and biopsy with polyp removal leading to decreased mortality. Implications for Nursing Practice Results provided in this scoping review highlight the importance of colorectal cancer screening in decreasing mortality. Patient compliance can be improved with comprehensive education, discussing the risks and benefits of screenings, and evaluating individual health beliefs or fears. Patients still hesitant with direct visualization tests should begin with noninvasive studies. All positive screenings from stool-based screenings require follow-up with a colonoscopy

    Using Bayesian networks to guide the assessment of new evidence in an appeal case.

    Get PDF
    When new forensic evidence becomes available after a conviction there is no systematic framework to help lawyers to determine whether it raises sufficient questions about the verdict in order to launch an appeal. This paper presents such a framework driven by a recent case, in which a defendant was convicted primarily on the basis of audio evidence, but where subsequent analysis of the evidence revealed additional sounds that were not considered during the trial. The framework is intended to overcome the gap between what is generally known from scientific analyses and what is hypothesized in a legal setting. It is based on Bayesian networks (BNs) which have the potential to be a structured and understandable way to evaluate the evidence in a specific case context. However, BN methods suffered a setback with regards to the use in court due to the confusing way they have been used in some legal cases in the past. To address this concern, we show the extent to which the reasoning and decisions within the particular case can be made explicit and transparent. The BN approach enables us to clearly define the relevant propositions and evidence, and uses sensitivity analysis to assess the impact of the evidence under different assumptions. The results show that such a framework is suitable to identify information that is currently missing, yet clearly crucial for a valid and complete reasoning process. Furthermore, a method is provided whereby BNs can serve as a guide to not only reason with incomplete evidence in forensic cases, but also identify very specific research questions that should be addressed to extend the evidence base and solve similar issues in the future.This research was funded by the Engineering and Physical Sciences Research Council of the UK through the Security Science Doctoral Research Training Centre (UCL SECReT) based at University College London (EP/G037264/1), and the European Research Council (ERC-2013-AdG339182-BAYES_KNOWLEDGE)

    Clinical implications of increased lymph vessel density in the lymphatic metastasis of early-stage invasive cervical carcinoma: a clinical immunohistochemical method study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer is the most common malignant gynecological cancer, and lymphatic metastasis can occur in the early stage of tumor growth. Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), a marker for lymphatic endothelium, provides powerful tools for studying tumor lymphangiogenesis. The purpose of this study is to investigate the clinical implications of lymphangiogenesis in the metastasis of early-stage invasive cervical carcinoma.</p> <p>Methods</p> <p>We used immunohistochemical (IHC) staining with the antibody against LYVE-1 to measure lymph vessel density in 41 cases of early-stage invasive cervical carcinoma and 12 cases of normal cervical samples. We then analyzed the correlation between lymph vessel density and clinicopathological features of the tumors.</p> <p>Results</p> <p>(1) The majority of peritumoral lymphatics were enlarged, dilated, and irregular. In contrast, intratumoral lymph vessels were small and collapsed. The peritumoral lymphatic vessel density (PLVD) was significantly higher than the intratumoral lymphatic vessel density (ILVD) (<it>P </it>< 0.01). (2) Both ILVD and PLVD were significantly higher than the LVD of the control cervixes (<it>P </it>< 0.01). (3) Both ILVD and PLVD were significantly associated with lymph node metastasis (ILVD, <it>P </it>< 0.05; PLVD, <it>P </it>< 0.01) and lymphatic vessel invasion (ILVD, <it>P </it>< 0.05; PLVD, <it>P </it>< 0.01). Both the ILVD and PLVD in patients with histological grade HG2 and HG3 were significantly higher than those with HG1 (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>Tumor lymphangiogenesis in early-stage invasive cervical carcinoma may play an important role in the process of lymphatic metastasis.</p

    Simulating the impact of varying vegetation on West African monsoon surface fluxes using a regional convection‐permitting model

    Get PDF
    This study assessed the sensitivity of the West African climate to varying vegetation fractions. The assessment of a such relationship is critical in understanding the interactions between land surface and atmosphere. Two sets of convection-permitting simulations from the UK Met Office Unified Model at 12 km horizontal resolution covering the monsoon period May–September (MJJAS) were used, one with fixed vegetation fraction (MF-V) and the other with time-varying vegetation fraction (MV-V). Vegetation fractions are based on MODIS retrievals between May and September. We focused on three climatic zones over West Africa: Guinea Coast, Sudanian Sahel, and the Sahel while investigating heat fluxes, temperature, and evapotranspiration. Results reveal that latent heat fluxes are the most strongly affected by vegetation fraction over the Sahelian and Sudanian regions while sensible heat fluxes are more impacted over the Guinea Coast and Sudanian Sahel. Also, in MV-V simulation there is an increase in evapotranspiration mainly over the Sahel and some specific areas in Guinea Coast from June to September. Moreover, it is noticed that high near-surface temperature is associated with a weak vegetation fraction, especially during May and June. Finally, varying vegetation seems to improve the simulation of surface energy fluxes and in turn impact on climate parameters. This suggests that climate modelers should prioritize the use of varying vegetation options to improve the representation of the West African climate system

    Mapping an atlas of tissue-specific drosophila melanogaster metabolomes by high resolution mass spectrometry

    Get PDF
    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes

    Get PDF
    Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis
    corecore