67 research outputs found

    Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p

    Expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.</p> <p>Methods</p> <p>sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. <it>In vitro </it>studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.</p> <p>Results</p> <p>sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. <it>In vitro</it>, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.</p> <p>Conclusions</p> <p>This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.</p

    Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

    Get PDF
    Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization

    Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats

    Get PDF
    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness

    The metastasis-associated protein S100A4 exists in several charged variants suggesting the presence of posttranslational modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A4 is a metastasis-associated protein which has been linked to multiple cellular events, and has been identified extracellularly, in the cytoplasm and in the nucleus of tumor cells; however, the biological implications of subcellular location are unknown. Associations between a variety of posttranslational protein modifications and altered biological functions of proteins are becoming increasingly evident. Identification and characterization of posttranslationally modified S100A4 variants could thus contribute to elucidating the mechanisms for the many cellular functions that have been reported for this protein, and might eventually lead to the identification of novel drugable targets.</p> <p>Methods</p> <p>S100A4 was immuoprecipitated from a panel of <it>in vitro </it>and <it>in vivo </it>sources using a monoclonal antibody and the samples were separated by 2D-PAGE. Gels were analyzed by western blot and silver staining, and subsequently, several of the observed spots were identified as S100A4 by the use of MALDI-TOF and MALDI-TOF/TOF.</p> <p>Results</p> <p>A characteristic pattern of spots was observed when S100A4 was separated by 2D-PAGE suggesting the presence of at least three charge variants. These charge variants were verified as S100A4 both by western immunoblotting and mass spectrometry, and almost identical patterns were observed in samples from different tissues and subcellular compartments. Interestingly, recombinant S100A4 displayed a similar pattern on 2D-PAGE, but with different quantitative distribution between the observed spots.</p> <p>Conclusion</p> <p>Endogenously expressed S100A4 were shown to exist in several charge variants, which indicates the presence of posttranslational modifications altering the net charge of the protein. The different variants were present in all subcellular compartments and tissues/cell lines examined, suggesting that the described charge variants is a universal phenomenon, and cannot explain the localization of S100A4 in different subcellular compartments. However, the identity of the specific posttranslational modification and its potential contribution to the many reported biological events induced by S100A4, are subject to further studies.</p

    The First Stars

    Get PDF
    The first stars to form in the Universe -- the so-called Population III stars -- bring an end to the cosmological Dark Ages, and exert an important influence on the formation of subsequent generations of stars and on the assembly of the first galaxies. Developing an understanding of how and when the first Population III stars formed and what their properties were is an important goal of modern astrophysical research. In this review, I discuss our current understanding of the physical processes involved in the formation of Population III stars. I show how we can identify the mass scale of the first dark matter halos to host Population III star formation, and discuss how gas undergoes gravitational collapse within these halos, eventually reaching protostellar densities. I highlight some of the most important physical processes occurring during this collapse, and indicate the areas where our current understanding remains incomplete. Finally, I discuss in some detail the behaviour of the gas after the formation of the first Population III protostar. I discuss both the conventional picture, where the gas does not undergo further fragmentation and the final stellar mass is set by the interplay between protostellar accretion and protostellar feedback, and also the recently advanced picture in which the gas does fragment and where dynamical interactions between fragments have an important influence on the final distribution of stellar masses.Comment: 72 pages, 4 figures. Book chapter to appear in "The First Galaxies - Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V. Bromm, B. Mobasher, T. Wiklin
    corecore