33 research outputs found

    California Men's Health Study (CMHS): a multiethnic cohort in a managed care setting

    Get PDF
    BACKGROUND: We established a male, multiethnic cohort primarily to study prostate cancer etiology and secondarily to study the etiologies of other cancer and non-cancer conditions. METHODS/DESIGN: Eligible participants were 45-to-69 year old males who were members of a large, prepaid health plan in California. Participants completed two surveys on-line or on paper in 2002 – 2003. Survey content included demographics; family, medical, and cancer screening history; sexuality and sexual development; lifestyle (diet, physical activity, and smoking); prescription and non-prescription drugs; and herbal supplements. We linked study data with clinical data, including laboratory, hospitalization, and cancer data, from electronic health plan files. We recruited 84,170 participants, approximately 40% from minority populations and over 5,000 who identified themselves as other than heterosexual. We observed a wide range of education (53% completed less than college) and income. PSA testing rates (75% overall) were highest among black participants. Body mass index (BMI) (median 27.2) was highest for blacks and Latinos and lowest for Asians, and showed 80.6% agreement with BMI from clinical data sources. The sensitivity and specificity can be assessed by comparing self-reported data, such as PSA testing, diabetes, and history of cancer, to health plan data. We anticipate that nearly 1,500 prostate cancer diagnoses will occur within five years of cohort inception. DISCUSSION: A wide variety of epidemiologic, health services, and outcomes research utilizing a rich array of electronic, biological, and clinical resources is possible within this multiethnic cohort. The California Men's Health Study and other cohorts nested within comprehensive health delivery systems can make important contributions in the area of men's health

    Age at natural menopause and risk of incident cardiovascular disease: A pooled analysis of individual patient data

    Get PDF
    Background: Early menopause is linked to an increased risk of cardiovascular disease mortality; however, the association between early menopause and incidence and timing of cardiovascular disease is unclear. We aimed to assess the associations between age at natural menopause and incidence and timing of cardiovascular disease. Methods: We harmonised and pooled individual-level data from 15 observational studies done across five countries and regions (Australia, Scandinavia, the USA, Japan, and the UK) between 1946 and 2013. Women who had reported their menopause status, age at natural menopause (if postmenopausal), and cardiovascular disease status (including coronary heart disease and stroke) were included. We excluded women who had hysterectomy or oophorectomy and women who did not report their age at menopause. The primary endpoint of this study was the occurrence of first non-fatal cardiovascular disease, defined as a composite outcome of incident coronary heart disease (including heart attack and angina) or stroke (including ischaemic stroke or haemorrhagic stroke). We used Cox proportional hazards models to estimate multivariate hazard ratios (HRs) and 95% CIs for the associations between age at menopause and incident cardiovascular disease event. We also adjusted the model to account for smoking status, menopausal hormone therapy status, body-mass index, and education levels. Age at natural menopause was categorised as premenopausal or perimenopausal, younger than 40 years (premature menopause), 40–44 years (early menopause), 45–49 years (relatively early), 50–51 years (reference category), 52–54 years (relatively late), and 55 years or older (late menopause). Findings: Overall, 301 438 women were included in our analysis. Of these 301 438 women, 12 962 (4·3%) had a first non-fatal cardiovascular disease event after menopause, of whom 9369 (3·1%) had coronary heart disease and 4338 (1·4%) had strokes. Compared with women who had menopause at age 50–51 years, the risk of cardiovascular disease was higher in women who had premature menopause (age <40 years; HR 1·55, 95% CI 1·38–1·73; p<0·0001), early menopause (age 40–44 years; 1·30, 1·22–1·39; p<0·0001), and relatively early menopause (age 45–49 years; 1·12, 1·07–1·18; p<0·0001), with a significantly reduced risk of cardiovascular disease following menopause after age 51 years (p<0·0001 for trend). The associations persisted in never smokers, and were strongest before age 60 years for women with premature menopause (HR 1·88, 1·62–2·20; p<0·0001) and early menopause (1·40, 1·27–1·54; p<0·0001), but were attenuated at age 60–69 years, with no significant association observed at age 70 years and older. Interpretation: Compared with women who had menopause at age 50–51 years, women with premature and early menopause had a substantially increased risk of a non-fatal cardiovascular disease event before the age of 60 years, but not after age 70 years. Women with earlier menopause need close monitoring in clinical practice, and age at menopause might also be considered as an important factor in risk stratification of cardiovascular disease for women

    Biofabrication: an overview of the approaches used for printing of living cells

    Get PDF
    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs

    Is there a space–time continuum in olfaction?

    Get PDF
    The coding of olfactory stimuli across a wide range of organisms may rely on fundamentally similar mechanisms in which a complement of specific odorant receptors on olfactory sensory neurons respond differentially to airborne chemicals to initiate the process by which specific odors are perceived. The question that we address in this review is the role of specific neurons in mediating this sensory system—an identity code—relative to the role that temporally specific responses across many neurons play in producing an olfactory perception—a temporal code. While information coded in specific neurons may be converted into a temporal code, it is also possible that temporal codes exist in the absence of response specificity for any particular neuron or subset of neurons. We review the data supporting these ideas, and we discuss the research perspectives that could help to reveal the mechanisms by which odorants become perceptions
    corecore