79 research outputs found

    Chimerism in Wild Adult Populations of the Broadcast Spawning Coral Acropora millepora on the Great Barrier Reef

    Get PDF
    Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall), based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection

    Sexual Plasticity and Self-Fertilization in the Sea Anemone Aiptasia diaphana

    Get PDF
    Traits that influence reproductive success and contribute to reproductive isolation in animal and plant populations are a central focus of evolutionary biology. In the present study we used an experimental approach to demonstrate the occurrence of environmental effects on sexual and asexual reproduction, and provide evidence for sexual plasticity and inter-clonal fertilization in laboratory-cultured lines of the sea anemone Aiptasia diaphana. We showed that in A. diaphana, both asexual reproduction by pedal laceration, and sexual reproduction have seasonal components. The rate of pedal laceration was ten-fold higher under summer photoperiod and water temperature conditions than under winter conditions. The onset of gametogenesis coincided with the rising water temperatures occurring in spring, and spawning occurred under parameters that emulated summer photoperiod and temperature conditions. In addition, we showed that under laboratory conditions, asexually produced clones derived from a single founder individual exhibit sexual plasticity, resulting in the development of both male and female individuals. Moreover, a single female founder produced not only males and females but also hermaphrodite individuals. We further demonstrated that A. diaphana can fertilize within and between clone lines, producing swimming planula larvae. These diverse reproductive strategies may explain the species success as invader of artificial marine substrates. We suggest that these diverse reproductive strategies, together with their unique evolutionary position, make Aiptasia diaphana an excellent model for studying the evolution of sex

    Diversity Partitioning of Stony Corals Across Multiple Spatial Scales Around Zanzibar Island, Tanzania

    Get PDF
    The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these processes might be most influential.A hierarchical (nested) sampling design was employed across three spatial scales, ranging from transects (<or=20 m), stations (<100 m), to sites (<1000 m), to examine coral diversity patterns. Two of the four sites, Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe, were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (gamma) into local alpha diversity and among-sample beta diversity components. Individual-based null models were used to identify deviations from random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity component in Changuu was significantly lower than the null expectation.The non-random outcome of the partitioning analyses helped to identify the among-sites scale (i.e., 10's of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA

    Nutrition, mental health and violence: from pregnancy to postpartum Cohort of women attending primary care units in Southern Brazil - ECCAGE study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Woman's nutritional status, before and during pregnancy, is a strong determinant of health outcomes in the mother and newborn. Gestational weight gain and postpartum weight retention increases risk of overweight or obesity in the future and they depend on the pregestational nutritional status and on food consumption and eating behavior during pregnancy. Eating behavior during pregnancy may be the cause or consequence of mood changes during pregnancy, especially depression, which increases likelihood of postpartum depression. In Brazil, a study carried out in the immediate postpartum period found that one in three women experienced some type of violence during pregnancy. Violence and depression are strongly associated and both exposures during pregnancy are associated with increased maternal stress and subsequent harm to the infant. The main objectives of this study are: to identify food intake and eating behaviors patterns; to estimate the prevalence of common mental disorders and the experience of violence during and after pregnancy; and to estimate the association between these exposures and infant's health and development.</p> <p>Methods/Design</p> <p>This is a cohort study of 780 pregnant women receiving care in 18 primary care units in two cities in Southern Brazil. Pregnant women were first evaluated between the 16<sup>th </sup>and 36<sup>th </sup>week of pregnancy at a prenatal visit. Follow-up included immediate postpartum assessment and around the fifth month postpartum. Information was obtained on sociodemographic characteristics, living circumstances, food intake, eating behaviors, mental health and exposure to violence, and on infant's development and anthropometrics measurements.</p> <p>Discussion</p> <p>This project will bring relevant information for a better understanding of the relationship between exposures during pregnancy and how they might affect child development, which can be useful for a better planning of health actions aiming to enhance available resources in primary health care.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Food and nutrition in a European context

    No full text
    corecore