58 research outputs found
Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions
The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the emulsifier. Hence, emulsions were prepared with either a combination of α-lactalbumin and β-lactoglobulin or with a combination of sodium caseinate and β-lactoglobulin. Results showed that an increase in pressure increased the oxidative stability of emulsions with caseinate and β-lactoglobulin, whereas it decreased the oxidative stability of emulsions with α-lactalbumin and β-lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions. (Résumé d'auteur
New sights into lipid metabolism regulation by low temperature in harvested Torreya grandis
Double Bond Stereochemistry Influences the Susceptibility of Short‑Chain Isoprenoids and Polyprenols to Decomposition by Thermo‑Oxidation
Alcohols are common constituents of
living cells. They are usually assigned a role in the adaptation
of the cell to environmental stimuli, and this process
might give rise to their oxidation by reactive oxygen
species. Moreover, cellular isoprenoids may also undergo
various chemical modifications resulting from the physicochemical
treatment of the tissues, e.g., heating during food
processing. Susceptibility of isoprenoid alcohols to heat
treatment has not been studied in detail so far. In this study,
isoprenoid alcohols differing in the number of isoprene units
and geometry of the double bonds, β-citronellol, geraniol,
nerol, farnesol, solanesol and Pren-9, were subjected to
thermo-oxidation at 80 °C. Thermo-oxidation resulted in the
decomposition of the tested short-chain isoprenoids as well
as medium-chain polyprenols with simultaneous formation
of oxidized derivatives, such as hydroperoxides, monoepoxides,diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation
Effects of rosemary (Rosmarinus officinalis L.) extracts and dry ice on the physicochemical stability of omega‐3 fatty‐acid‐fortified surimi‐like meat products
Effect of dietary inclusion of different lipid supplements on quality and oxidative susceptibility of beef meat
Selective Disruption of Endothelial Barrier Function in Culture by Pure Fatty Acids and Fatty Acids Derived from Animal and Plant Fats
Antioxidant and prooxidant activity behavior of phospholipids in stripped soybean oil-in-water emulsions
Phospholipids have been reported to inhibit lipid oxidation in bulk oils, but very little is known about their influence on oxidation in oil-in-water emulsions. In the present study, the impact of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) on lipid oxidation was studied in 1% stripped soybean oil-in-water (O/W) emulsions as a function of DOPC concentration and pH (3 and 7). At pH 7.0, DOPC inhibited lipid oxidation in O/W emulsions, while DOPC was prooxidative at pH 3.0. DOPC did not affect emulsion droplet charge or size at either pH 3.0 or 7.0 The antioxidant activity at pH 7.0 was observed in a series of phospholipids (PL) that varied in fatty acid unsaturation level and chain length as well as type of phosphate head group. Overall, phosphatidylcholine with either oleic or palmitic acid were the most effective at inhibiting lipid hydroperoxide and hexanal formation of all of the PLs tested. Antioxidant mechanism of PLs could not be ascribed to their ability to decompose lipid hydroperoxides. It might be possible that, at pH 7.0, the PLs antioxidant activity is related to their ability to form structures within the lipid phase of the emulsions droplets or to chelate metals
Antioxidant and Prooxidant Activity Behavior of Phospholipids in Stripped Soybean Oil‐in‐Water Emulsions
Effects of Alcohol Type and Amounts on Conjugated Linoleic Acid Formation During Catalytic Transfer Hydrogenation of Soybean Oil
Monitoring lipase-catalyzed butterfat interesterification with rapesee oil by Fourier transform near-infrared spectroscopy
- …
