brought to you by

Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the emulsifier. Hence, emulsions were prepared with either a combination of α -lactalbumin and β -lactoglobulin or with a combination of sodium caseinate and β -lactoglobulin. Results showed that an increase in pressure increased the oxidative stability of emulsions with caseinate and β -lactoglobulin, whereas it decreased the oxidative stability of emulsions with α -lactalbumin and β -lactoglobulin. For both types of emulsions the partitioning of proteins between the interface and the aqueous phase appeared to be important for the oxidative stability. The effect of pre-heating the aqueous phase with the milk proteins prior to homogenization did not have any clear effect on lipid oxidation in either of the two types of emulsions.

General information

State: Published

Organisations: National Food Institute, Division of Industrial Food Research, Unité Mixte de Recherche

Authors: Horn, A. F. (Intern), Barouh, N. (Ekstern), Nielsen, N. S. (Intern), Baron, C. P. (Intern), Jacobsen, C. (Intern)

Pages: 1541-1550 Publication date: 2013

Main Research Area: Technical/natural sciences

Publication information

Journal: Journal of the American Oil Chemists' Society

Volume: 90 Issue number: 10 ISSN (Print): 0003-021x

Ratings:

BFI (2017): BFI-level 1

Web of Science (2017): Indexed Yes

BFI (2016): BFI-level 1

Scopus rating (2016): CiteScore 1.64 SJR 0.696 SNIP 0.905

Web of Science (2016): Indexed yes

BFI (2015): BFI-level 1

Scopus rating (2015): SJR 0.682 SNIP 0.997 CiteScore 1.66

Web of Science (2015): Indexed yes

BFI (2014): BFI-level 1

Scopus rating (2014): SJR 0.767 SNIP 1.043 CiteScore 1.68

BFI (2013): BFI-level 1

Scopus rating (2013): SJR 0.809 SNIP 1.074 CiteScore 1.71

ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes

BFI (2012): BFI-level 1

Scopus rating (2012): SJR 0.871 SNIP 1.236 CiteScore 1.81

ISI indexed (2012): ISI indexed yes Web of Science (2012): Indexed yes

BFI (2011): BFI-level 1

Scopus rating (2011): SJR 0.833 SNIP 1.292 CiteScore 1.98

ISI indexed (2011): ISI indexed yes Web of Science (2011): Indexed yes

BFI (2010): BFI-level 1

Scopus rating (2010): SJR 0.763 SNIP 1.056

Web of Science (2010): Indexed yes

BFI (2009): BFI-level 1

Scopus rating (2009): SJR 0.863 SNIP 1.183

Web of Science (2009): Indexed yes

BFI (2008): BFI-level 1

Scopus rating (2008): SJR 0.667 SNIP 1.037

Web of Science (2008): Indexed yes

Scopus rating (2007): SJR 0.663 SNIP 0.891

Web of Science (2007): Indexed yes

Scopus rating (2006): SJR 0.658 SNIP 0.851

Web of Science (2006): Indexed yes

Scopus rating (2005): SJR 0.706 SNIP 0.973

Web of Science (2005): Indexed yes

Scopus rating (2004): SJR 0.73 SNIP 0.993

Web of Science (2004): Indexed yes

Scopus rating (2003): SJR 0.761 SNIP 1.145

Web of Science (2003): Indexed yes

Scopus rating (2002): SJR 0.977 SNIP 1.172

Web of Science (2002): Indexed yes

Scopus rating (2001): SJR 0.911 SNIP 1.245

Web of Science (2001): Indexed yes

Scopus rating (2000): SJR 0.735 SNIP 1.126

Web of Science (2000): Indexed yes

Scopus rating (1999): SJR 0.918 SNIP 1.278

Original language: English

Omega-3 emulsion, Sodium caseinate, Homogenization conditions

DOIs:

10.1007/s11746-013-2292-2

Source: dtu

Source-ID: n::oai:DTIC-ART:springer/393191022::32367

Publication: Research - peer-review > Journal article - Annual report year: 2013