465 research outputs found

    An approach to improve accuracy in probabilistic models using state refinement

    Get PDF
    Probabilistic models are useful in the analysis of system be- haviour and non-functional properties. Reliable estimates and measurements of probabilities are needed to annotate behaviour models in order to generate accurate predictions. However, this may not be su cient, and may still lead to inaccurate results when the system model does not properly re ect the probabilistic choices made by the environment. Thus, not only should the probabilities be accurate in prop- erly re ecting reality, but also the model that is being used. In this paper we propose state re nement as a technique to mitigate this problem, showing that it is guaranteed to preserve or increase the accuracy of the initial model. We present a framework for iteratively improving the accuracy of a probabilistically annotated behaviour model with re- spect to a set of benchmark properties through iterative state re nements

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    The Socio-economic Impacts of Social Media Privacy and Security Challenges

    Get PDF
    © 2020, Springer Nature Singapore Pte Ltd. Privacy and Security are two major challenges faced by users on social media today. These challenges are experienced in diverse ways and forms by different types of users across the web. While technological solutions are usually implemented to address them, the effects have proven to be limited so far. Despite continuous deployment of technological solutions, the need to evaluate socio-economic impacts of these challenges have also become more imperative. Hence, this paper provides a critical review and analysis of socio-economic impacts of these social media challenges. The research findings reveal significant levels of negative socio-economic impacts and provides an evaluation framework towards defining the scope, thereby identifying appropriate measures for both addressing the challenges and curbing the socio-economic impacts. The findings also demonstrate the need for solutions beyond the use of technology, to employing and deploying solutions from social sciences which deals with behavioral issues and how to address them

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    The influence of self-owned home blood pressure monitoring (HBPM) on primary care patients with hypertension: A qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Home blood pressure monitoring (HBPM) is gaining popularity among hypertensive patients. This study aimed to explore the influence of self-initiated HBPM on primary care patients with hypertension.</p> <p>Methods</p> <p>Six in-depth interviews and two focus group discussions were conducted, taking into consideration the experiences of 24 primary care patients with hypertension. These patients had been using HBPM as part of their hypertension management. The overriding influences were grouped under themes which emerged from analyzing the data using the grounded theory approach.</p> <p>Results</p> <p>There are both positive and negative influences of self-initiated HBPM. Patients used the readings of their HBPM to decide on many aspects of their hypertension management. The HBPM readings both influenced their adherence to diet and exercise and provided certain reassurance when they experienced symptoms. In addition, the act of discussing their HBPM readings with their health care providers resulted in an enhanced doctor-patient therapeutic relationship. Nevertheless, HBPM created confusion at times in some patients, particularly with regard to the target blood pressure level and the need for medication. This led to some patients making their own medical decisions based on their own standards.</p> <p>Conclusions</p> <p>HBPM is becoming an integral part of hypertension management. Primary care patients who self-initiated HBPM reported being more self-efficacious, but lack of participation and guidance from their doctors created confusion, and hindered the true benefit of HBPM.</p

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    Modular Synthesis of Semiconducting Graft Co-polymers to Achieve "clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting

    Get PDF
    Semiconducting polymer nanoparticles (SPNs) have been explored for applications in cancer theranostics because of their high absorption coefficients, photostability and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, we describe a method for achieving colloidally stable and low-fouling SPNs by grafting PEG onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole) (F8BT-F), in a simple one-step substitution reaction, post-polymerisation. Further, by utilising azide-functionalised PEG we site-specifically "click" anti-HER2 antibodies, Fab fragments, or affibodies onto the SPN surface, which allows the functionalised SPNs to specifically target HER2-positive cancer cells. In vivo, our PEGylated SPNs were found to have excellent circulation efficiencies in zebrafish embryos for up to seven days post-injection. SPNs functionalised with affibodies were then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics. This article is protected by copyright. All rights reserved

    Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease

    Get PDF
    This study tested the utility of optical coherence tomography (OCT)-based indentation to assess mechanical properties of respiratory tissues in disease. Using OCT-based indentation, the elastic modulus of mouse diaphragm was measured from changes in diaphragm thickness in response to an applied force provided by an indenter. We used a transgenic mouse model of chronic lung disease induced by the overexpression of transforming growth factor-alpha (TGF-a), established by the presence of pleural and peribronchial fibrosis and impaired lung mechanics determined by the forced oscillation technique and plethysmography. Diaphragm elastic modulus assessed by OCT-based indentation was reduced by TGF-a at both left and right lateral locations (p &lt; 0.05). Diaphragm elastic modulus at left and right lateral locations were correlated within mice (r = 0.67, p &lt; 0.01) suggesting that measurements were representative of tissue beyond the indenter field. Co-localised images of diaphragm after TGF-a overexpression revealed a layered fibrotic appearance. Maximum diaphragm force in conventional organ bath studies was also reduced by TGF-a overexpression (p &lt; 0.01). Results show that OCT-based indentation provided clear delineation of diseased diaphragm, and together with organ bath assessment, provides new evidence suggesting that TGF-a overexpression produces impairment in diaphragm function and, therefore, an increase in the work of breathing in chronic lung disease

    A Novel Tandem Mass Spectrometry Method for Rapid Confirmation of Medium- and Very Long-Chain acyl-CoA Dehydrogenase Deficiency in Newborns

    Get PDF
    BACKGROUND:Newborn screening for medium- and very long-chain acyl-CoA dehydrogenase (MCAD and VLCAD, respectively) deficiency, using acylcarnitine profiling with tandem mass spectrometry, has increased the number of patients with fatty acid oxidation disorders due to the identification of additional milder, and so far silent, phenotypes. However, especially for VLCADD, the acylcarnitine profile can not constitute the sole parameter in order to reliably confirm disease. Therefore, we developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method to rapidly determine both MCAD- and/or VLCAD-activity in human lymphocytes in order to confirm diagnosis. METHODOLOGY:LC-MS/MS was used to measure MCAD- or VLCAD-catalyzed production of enoyl-CoA and hydroxyacyl-CoA, in human lymphocytes. PRINCIPAL FINDINGS:VLCAD activity in controls was 6.95+/-0.42 mU/mg (range 1.95 to 11.91 mU/mg). Residual VLCAD activity of 4 patients with confirmed VLCAD-deficiency was between 0.3 and 1.1%. Heterozygous ACADVL mutation carriers showed residual VLCAD activities of 23.7 to 54.2%. MCAD activity in controls was 2.38+/-0.18 mU/mg. In total, 28 patients with suspected MCAD-deficiency were assayed. Nearly all patients with residual MCAD activities below 2.5% were homozygous 985A>G carriers. MCAD-deficient patients with one other than the 985A>G mutation had higher MCAD residual activities, ranging from 5.7 to 13.9%. All patients with the 199T>C mutation had residual activities above 10%. CONCLUSIONS:Our newly developed LC-MS/MS method is able to provide ample sensitivity to correctly and rapidly determine MCAD and VLCAD residual activity in human lymphocytes. Importantly, based on measured MCAD residual activities in correlation with genotype, new insights were obtained on the expected clinical phenotype
    corecore