75 research outputs found

    Data-driven prediction modeling for part attributes and process monitoring in additive manufacturing

    Get PDF
    The first study aimed to use artificial neural networks (ANN) to predict how process parameters would affect the part attributes in an extrusion-based additive manufacturing (AM) process. The study involved parts fabrication using an orthogonal array experimental design with five process parameters at three levels: building orientation, print speed, extrusion temperature, deposition direction, and layer thickness. The fabricated parts were measured for dimensional accuracy, surface roughness, and tensile strength. These attributes were then used to train, validate, and test multilayer ANN models. Three of the four ANN models were for predicting each of the three-part qualities separately, while the fourth was for combining all three attributes. Regarding RMSE and correlation coefficient, the findings showed that the individual part attribute ANN models outperformed the model for combining three attributes. To determine which parameters had a higher impact on the individual part qualities, comparisons between the individual part attributes with respect to the process parameters were made. The trained ANN models can forecast and optimize the part properties in extrusion-based AM processes. The second research developed a new method of collecting time series data for process monitoring in a Fused Filament Fabrication (FFF) system using wireless sensors to predict the machine bed angular velocity of FFF using the Vanilla Long Short-Term Memory (VLSTM) network. With two levels, the printer speed and deposition direction of the nozzle head were used in this study following a full factorial experimental design to investigate their effects on machine vibration during printing. Time series machine bed angular velocity data were collected and used to train and test the proposed VLSTM network. Adam optimizer and VLSTM networks with four cells generated the best training accuracy after 100 epochs. One developed VLSTM model was used to train and test the network by inserting four-time series machine bed angular velocity data. Then four-time series simulation results were investigated to analyze the outputs of our developed and trained model. Simulation and experimental results were analyzed using root mean square error (RMSE). Practical data analysis concluded that the deposition direction of the nozzle head and printer speed both significantly affected the angular velocity of the printer bed. The developed VLSTM model can be used to predict the FFF printer bed angular velocity having different unexplored printer speeds and deposition directions, which will eventually help predict the quality of the printed parts through machine vibration analysis

    Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface

    Get PDF
    Background: Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings: In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100 % of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance: Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cell

    Vitamin D supplementation for the prevention of type 2 diabetes in overweight adults: study protocol for a randomized controlled trial

    Get PDF
    Despite Australia's sunny climate, low vitamin D levels are increasingly prevalent. Sun exposure is limited by long working hours, an increase in time spent indoors, and sun protection practices, and there is limited dietary vitamin D fortification. While the importance of vitamin D for bone mineralization is well known, its role as a protective agent against chronic diseases, such as type 2 diabetes and cardiovascular disease, is less understood. Observational and limited intervention studies suggest that vitamin D might improve insulin sensitivity and secretion, mainly via its anti-inflammatory properties, thereby decreasing the risk of development and progression of type 2 diabetes. The primary aim of this trial is to investigate whether improved plasma concentrations of 25-hydroxyvitamin D (25(OH)D), obtained through vitamin D supplementation, will increase insulin sensitivity and insulin secretion. A secondary aim is to determine whether these relationships are mediated by a reduction in underlying subclinical inflammation associated with obesity.Fifty overweight but otherwise healthy nondiabetic adults between 18 and 60 years old, with low vitamin D levels (25(OH)D < 50 nmol/l), will be randomly assigned to intervention or placebo. At baseline, participants will undergo a medical review and anthropometric measurements, including dual X-ray absorptiometry, an intravenous glucose tolerance test, muscle and fat biopsies, a hyperinsulinemic euglycemic clamp, and questionnaires assessing diet, physical activity, sun exposure, back and knee pain, and depression. The intervention group will receive a first dose of 100,000 IU followed by 4,000 IU vitamin D (cholecalciferol) daily, while the placebo group will receive apparently identical capsules, both for a period of 16 weeks. All measurements will be repeated at follow-up, with the primary outcome measure expressed as a change from baseline in insulin sensitivity and secretion for the intervention group compared with the placebo group. Secondary outcome measures will compare changes in anthropometry, cardiovascular risk factors, and inflammatory markers.The trial will provide much needed clinical evidence on the impact of vitamin D supplementation on insulin resistance and secretion and its underlying mechanisms, which are relevant for the prevention and management of type 2 diabetes.Clinicaltrials.gov ID: NCT02112721 .Barbora de Courten, Aya Mousa, Negar Naderpoor, Helena Teede, Maximilian P J de Courten and Robert Scrag

    Identification of Piwil2-Like (PL2L) Proteins that Promote Tumorigenesis

    Get PDF
    PIWIL2, a member of PIWI/AGO gene family, is expressed in the germline stem cells (GSCs) of testis for gametogenesis but not in adult somatic and stem cells. It has been implicated to play an important role in tumor development. We have previously reported that precancerous stem cells (pCSCs) constitutively express Piwil2 transcripts to promote their proliferation. Here we show that these transcripts de facto represent Piwil2-like (PL2L) proteins. We have identified several PL2L proteins including PL2L80, PL2L60, PL2L50 and PL2L40, using combined methods of Gene-Exon-Mapping Reverse Transcription Polymerase Chain Reaction (GEM RT-PCR), bioinformatics and a group of novel monoclonal antibodies. Among them, PL2L60 rather than Piwil2 and other PL2L proteins is predominantly expressed in various types of human and mouse tumor cells. It promotes tumor cell survival and proliferation in vitro through up-regulation of Stat3 and Bcl2 gene expressions, the cell cycle entry from G0/1 into S-phase, and the nuclear expression of NF-ΞΊB, which contribute to the tumorigenicity of tumor cells in vivo. Consistently, PL2L proteins rather than Piwil2 are predominantly expressed in the cytoplasm or cytoplasm and nucleus of euchromatin-enriched tumor cells in human primary and metastatic cancers, such as breast and cervical cancers. Moreover, nuclear PL2L proteins are always co-expressed with nuclear NF-ΞΊB. These results reveal that PL2L60 can coordinate with NF-ΞΊB to promote tumorigenesis and might mediate a common pathway for tumor development without tissue restriction. The identification of PL2L proteins provides a novel insight into the mechanisms of cancer development as well as a novel bridge linking cancer diagnostics and anticancer drug development

    Integrated Profiling of MicroRNAs and mRNAs: MicroRNAs Located on Xq27.3 Associate with Clear Cell Renal Cell Carcinoma

    Get PDF
    Background: With the advent of second-generation sequencing, the expression of gene transcripts can be digitally measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology. Methodology: The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results were validated in a large cohort of ccRCC patients. Principal Findings: A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC carcinogenesis were also discovered in this study. Pathways controlling cell fates (e. g., cell cycle and apoptosis pathways) and cell communication (e. g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster located on Xq27.3 was consistently downregulated in at least 76.7% of similar to 50 ccRCC patients. Conclusions: Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways. Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-Ξ³

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-Ξ³ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-Ξ³-responsive promoters. However, neither synthesis nor secretion of IFN-Ξ³ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link
    • …
    corecore