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 ABSTRACT 

DATA-DRIVEN PREDICTION MODELING FOR PART ATTRIBUTES 

AND PROCESS MONITORING IN ADDITIVE MANUFACTURING 

Jayanta Bhusan Deb, MSET 

Western Carolina University (June 2023) 

Advisor: Dr. Nazmul Ahsan 

 

The first study aimed to use artificial neural networks (ANN) to predict how process parameters 

would affect the part attributes in an extrusion-based additive manufacturing (AM) process. The 

study involved parts fabrication using an orthogonal array experimental design with five process 

parameters at three levels: building orientation, print speed, extrusion temperature, deposition 

direction, and layer thickness. The fabricated parts were measured for dimensional accuracy, 

surface roughness, and tensile strength. These attributes were then used to train, validate, and test 

multilayer ANN models. Three of the four ANN models were for predicting each of the three-

part qualities separately, while the fourth was for combining all three attributes. Regarding 

RMSE and correlation coefficient, the findings showed that the individual part attribute ANN 

models outperformed the model for combining three attributes. To determine which parameters 

had a higher impact on the individual part qualities, comparisons between the individual part 

attributes with respect to the process parameters were made. The trained ANN models can 

forecast and optimize the part properties in extrusion-based AM processes. The second research 

developed a new method of collecting time series data for process monitoring in a Fused 

Filament Fabrication (FFF) system using wireless sensors to predict the machine bed angular 

velocity of FFF using the Vanilla Long Short-Term Memory (VLSTM) network. With two 

levels, the printer speed and deposition direction of the nozzle head were used in this study 
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following a full factorial experimental design to investigate their effects on machine vibration 

during printing. Time series machine bed angular velocity data were collected and used to train 

and test the proposed VLSTM network. Adam optimizer and VLSTM networks with four cells 

generated the best training accuracy after 100 epochs. One developed VLSTM model was used 

to train and test the network by inserting four-time series machine bed angular velocity data. 

Then four-time series simulation results were investigated to analyze the outputs of our 

developed and trained model. Simulation and experimental results were analyzed using root 

mean square error (RMSE). Practical data analysis concluded that the deposition direction of the 

nozzle head and printer speed both significantly affected the angular velocity of the printer bed. 

The developed VLSTM model can be used to predict the FFF printer bed angular velocity having 

different unexplored printer speeds and deposition directions, which will eventually help predict 

the quality of the printed parts through machine vibration analysis. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Introduction 

Additive manufacturing, also known as 3D printing, is quickly overtaking other 

traditional production technologies in the manufacturing sector because of its ambitious tactics 

and desire to meet consumer demands and keep up with the current digitization of the 

manufacturing business. Compared to traditional manufacturing, which completes the building of 

the final goods using multiple steps with more tooling and significant amount of time, additive 

manufacturing completes the construction of the final products in one step with less tooling and 

time and in a more straightforward method [1]. Vat photopolymerization, material jetting, binder 

jetting, material extrusion, powder bed fusion, sheet lamination, and directed energy deposition 

are the different types of additive manufacturing technologies. Layer thickness, printing speed, 

nozzle temperature/laser power, infill percentage, infill pattern, build orientation, and deposition 

direction are important process variables for all additive manufacturing techniques where various 

materials are used for printing, and each method has its measurement for diagnosing system 

accuracy. Additionally, each technique has a final user application [2]. 

Extrusion-based 3D printing uses a heated moving nozzle to deposit particular materials 

layer by layer along a preset route or pattern [3]. Extrusion-based fused filament fabrication 

(FFF), also known as fused deposition modeling (FDM), techniques are more user-friendly and 

well-liked than other additive manufacturing processes for producing functional parts and 

finished products, as well as prototypes for product development and testing. This is because 

they are accessible, affordable, simple to use and maintain, and materials are readily available. 

To complete the overall fabrication, FDM employs polylactic acid (PLA), polyetherimide, 



 

2 
 

acrylonitrile butadiene styrene (ABS), polyether ether ketone, polycarbonate (PC), fiber-

reinforced thermoplastic filament, etc., through a hot nozzle for the manufacture of parts [4]. 

The use of FDM technology is increasing in industrial sectors and medical sciences 

because of its more accessible post-processing techniques, material availability, and lower cost. 

However, the final quality of the printed parts can be affected by various process parameters and 

different manufacturing conditions [5], [6]. Advanced quality analysis and optimizing the 

process parameters are essential for the AM final printed products [7], [8]. Traditional 

optimization techniques require printing multiple samples and testing their performance, 

increasing the design process's time, effort, and cost. Furthermore, uncertainty and variations in 

process conditions/parameters and materials during printing may lead to defects and variability 

in parts [9], [10]. Therefore, reliable quality analysis and process monitoring systems are 

necessary to interpret the correlation between process parameters and process results in the FDM 

process to generate a better outcome. 

1.2 Literature Review 

The process parameters affect the mechanical qualities and printing quality. When 

employing FDM, users frequently need help getting the appropriate mechanical performance of 

the printed specimen. The threshold of each process parameter more strongly influences the 

ultimate quality of the built pieces. The tensile strength of materials is greatly influenced by 

nozzle temperature and layer thickness; tensile strength rises as nozzle temperature increases, 

and the reverse phenomenon occurs as nozzle temperature falls. Similarly to this, decreasing 

layer height can lead to an increase in tensile strength, while increasing layer thickness can have 

the opposite effect [11]. Surface quality is improved by reducing layer thickness [12].  Due to the 

lack of bonding time between deposited filaments, the material’s tensile strength decreases as the 
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raster angle or the angle between deposition direction and loading direction grows, and the 

printing speed climbs [2]. The essential process factors for the build part's quality in terms of 

surface roughness are the layer thickness, build orientation angle, and infill deposition angle. The 

material’s ultimate tensile strength and elastic modulus are significantly influenced by layer 

thickness, infill percentage, top/bottom layers, solid shells, and build orientation [13]. Regarding 

dimensional accuracy, Mohamed et al. [11] showed that diameter error increased with a decrease 

in deposition angle, but the error decreased with an increase in slice thickness. Length error fell 

after lowering the slice thickness, deposition angle, and part print direction. Previous research 

has found that the key to producing high-quality goods is to combine the input process 

parameters in the best possible way. 

Changing various FDM process parameters is crucial to enhancing the final part's 

strength, surface quality, and accuracy [14]. A user needs help realistically executing a series of 

test prints and extensive experimentation to identify the ideal levels of the process parameters 

providing the required component quality. Due to the necessity of this considerable testing, the 

mechanical attributes of the FDM-fabricated item are also variable and sometimes overlooked. 

The process influences on surface quality and dimension accuracy are also significant. Therefore, 

the fabrication process uncertainties restrict FDM components’ use in industrial and mission-

critical settings. 

The experimental labor required to estimate certain part qualities can be reduced using 

computational geometry-based techniques. For example, in earlier research [15], [16], 

computational geometry-based methods were used to analyze the 3D geometric model of 

components to identify the best values for process parameters such as building orientation and 

deposition direction to maximize surface quality and manufacturability. However, these 
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approaches theoretically estimate the part properties. Additionally, these methods are not 

designed to predict the mechanical characteristics of 3D-printed objects.   

To forecast the characteristics of 3D printed objects, machine learning techniques have 

recently been applied in additive [17] and advanced [18] manufacturing. The most popular 

machine learning technique for prediction and classification is the artificial neural network 

(ANN) [19]. To increase the component surface quality during the FDM process, the input 

parameters have recently been optimized using ANN due to their effectiveness in pattern 

recognition [20]. To anticipate the top and bottom surface quality of FDM items printed using 

PLA material, Kandananond et al.  [21] employed an ANN model and the Box Behnken 

technique to optimize process parameters such as bed temperature, print speed, and layer 

thickness. However, while modeling the parameters-attributes connection using ANN, the prior 

studies have mainly concentrated on each attribute rather than considering the primary 

component attributes in a holistic approach. Due to the complicated dynamics and uncertainties 

in the FDM process, the model's holistic aspect must be considered.    

It is found in the literature related to the process monitoring in FDM that infrared (IR) 

imaging cameras, thermocouples, pyrometers, vibration meters, optical emission spectrometers, 

and displacement sensors were used to measure temperature, vibration, optical emissions, and 

strain to analyze process conditions and detect defects in parts [22]–[25]. An online monitoring 

technique was developed by Rao et al. [26], which used thermocouples, accelerometers, and 

infrared temperature sensors to detect the failures in the desktop 3D printer by applying 

advanced Bayesian non-parametric analysis. Humidity, airflow, and temperature also impact the 

quality of the final printed parts. These environmental factors could affect internal geometry, 

mechanical strength, and surface quality [5]. Menderes et al. [27] investigated the effect of 3D 
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printer system vibrations on the mechanical properties of the printed parts. Some researchers 

used some other techniques [28]–[30]. So, monitoring machine vibration (acceleration, angular 

velocity, etc.) is vital to detect faults in manufactured parts to eliminate defects/scraps and 

maintain high standards for part quality. Additionally, the angular velocity of the printer bed is 

another factor that can impact the printing quality of the printed parts. Therefore, it is essential to 

investigate the effects of FDM process parameters on the printer angular velocity and predict it 

to maintain good printing quality. 

1.3 Contribution of the First Study 

The first study used artificial neural networks (ANN) to simulate the interaction between 

the process parameters and three fundamental component properties. This work produced 

components with three levels using an orthogonal array experimental design having five process 

parameters, including build orientation, print speed, extrusion temperature, deposition direction, 

and layer thickness. The developed artificial neural network models are trained, validated, and 

tested using measurements of three properties of the manufactured components, including 

dimensional correctness, surface roughness, and tensile strength. A comprehensive ANN model 

combined all three-part qualities and three distinct ANN models developed for each attribute. To 

determine which process factors, impact the individual component qualities, comparisons 

between the individual part attributes regarding those parameters were made. The user may 

improve the process parameters and component characteristics without investing in expensive 

and time-consuming fabrication trials by using the trained ANN models to forecast the following 

attributes of various parts for different undiscovered process parameter levels. 
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1.4 Contribution of the Second Study 

The second study utilized a novel wireless sensor-based approach to collect time series 

angular velocity data, aiming to investigate the influence of deposition directions and printing 

speeds on the angular velocity of FDM printers and develop a time series angular velocity 

prediction model. Two levels of printer speed and deposition direction with a full factorial design 

of the experiment were chosen to examine their impact on the angular velocity of the printer bed. 

Additionally, a Vanilla Long-Short-Term Memory (VLSTM) model was developed to forecast 

the angular velocity of the printer bed for the forthcoming layers using the time series angular 

velocity data of the initial four layers. The model was trained extensively to optimize its 

performance before testing. Furthermore, time series test results were investigated for full 

factorial design combinations of printer speeds and deposition directions. The VLSTM model 

developed in this study can estimate the angular velocity of future layers for different unexplored 

printer speeds and deposition directions based on prior printing layer data. The estimated angular 

velocity for future layers can be used to analyze and detect potential anomalies ensuing in the 

printing process and take decisions on corrective actions.  
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CHAPTER 2. BACKGROUND 

 

2.1 Extrusion-Based Fused Deposition Modeling 

With extrusion-based 3D printing, the desired item is created by layer-by-layer deposition 

of specified materials using a moving nozzle under the guidance of G code from the printing 

machine software. Extrusion-based fused filament fabrication is distinct from other techniques 

due to its simplicity, accessibility, affordability, usability, maintainability, and the availability of 

materials and prototypes for product development and testing. 

Weake et al. [1] used fused deposition modeling to forecast the tensile strength of 

materials based on polylactic acid (PLA). The process parameters of a twin extruder 3D printer 

were optimized using this model, which was also employed by Teharia et al. [2]. The Fused 

Filament Fabrication System's process variables were optimized using tensile specimens made of 

PLA [31]. Tura et al. [19] conducted an experimental analysis using fused deposition modeling 

to enhance the items’ quality. To improve the fused filament fabrication process parameters and 

boost material strength, Pazhamannil et al. [4] conducted research. Fused deposition modeling is 

used to forecast and simulate the dimensional accuracy of components made using FDM [11]. 

Fuzzy logic was employed by Femi-Oyetoro [3] in fused deposition modeling to improve 

dimensional accuracy. 

2.2 Artificial Neural Network 

Artificial intelligence has been used in the past few years to optimize the process 

parameters for attaining the preferred product consumer’s desire. The application of artificial 

intelligence for solving complex problems such as computing, physical sciences, engineering, 
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and statistics is increasing daily. Supervised, Unsupervised, and Reinforced machine learning are 

different techniques for solving complex problems. Neural Network is an example of supervised 

machine learning, which can recognize patterns after judging the nonlinear relationships between 

the input and output factors.  

The artificial neural network is a popular machine learning tool for forecasting and 

prediction that functions similarly to the neurons in the human brain in terms of learning, 

adapting, and changing. In this method, each input neuron has an activation function that 

processes the weighted sum of each input to produce output. An additional bias input changes the 

net input to the activation function. The hidden layer's hidden neurons significantly impact how 

the network is designed and connected from the input signal to the output signal. Feed-

forwarding networks are frequently used when training an ANN model with input data. The error 

backpropagation method uses hidden neurons in the hidden layer to identify the best pattern after 

calculating the correlation coefficient between the self-sufficient input variables and relying on 

output variables [19]. 

Weake et al. [1] applied an artificial neural network using nozzle temperature, layer 

thickness, and infill speed as input parameters and one hidden layer with ten neurons to predict 

output as tensile strength. Layer thickness, air gap, raster angle, build orientation, raster width, 

and the number of contours used as input in the ANN model, whereas the outputs are tensile 

strength, build time, and surface roughness [2]. Giri et al. [31] predicted the ultimate tensile 

strength of the ASTM standard specimen by applying an artificial neural network having layer 

thickness, nozzle temperature, speed rate, infill pattern, and raster orientation as process 

parameters. Tura et al. [19] used an artificial neural network model to determine the part quality 

of fabricated parts where layer thickness, orientation angle, and infill angle played a vital role. 
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Pazhamannil et al. [4] improved the engineering stress by applying the ANN model and figured 

out the impact of layer thickness, orientation, and temperature on the stress of materials. 

Dimensional accuracy increased for FDM printed parts after applying an artificial neural network 

where slice thickness, raster-to-raster air gap, deposition angle, part print direction, bead width, 

and the number of perimeters were analyzed as process parameters [11].  

2.3 Vanilla Long Short-Term Memory (VLSTM) Network 

The issue of the gradients getting very small (i.e., vanishing gradient) during 

backpropagation across time in recurrent neural networks (RNNs) makes it difficult or 

impossible for the network to learn long-term dependencies. To overcome this vanishing 

gradient problem, Hochreiter and Schmidhuber [32] developed the LSTM method in 

1997.VLSTM network is a long short-term memory (LSTM) network with one input layer, one 

hidden layer of LSTM units, and an output layer to make the prediction. LSTMs are different 

from traditional feed-forward neural networks because of their feedback connections. This 

characteristic helps LSTM process the entire sequence of time series data instead of treating 

every point individually. By following this, LSTM collects valuable information about previous 

data points in the sequence to predict future data sets. As a result, complex machine-learning 

problems have been solved using the LSTM model. Instead of neurons, LSTM networks with 

memory blocks are connected through the whole hidden layer. Memory blocks can update the 

information depending on the time series of sequential data. That is why memory blocks are used 

in LSTM rather than using neurons in the hidden layers [33]. An optimized machine learning 

model has been developed in this study for data-driven time series prediction of machine bed 

angular velocity. 
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The output of the LSTM network depends on the current cell state, the previous hidden 

state's output, and the present state's input data. A memory block of the LSTM network consists 

of three gates: forget gate, an input gate, and an output gate. The network topology in a memory 

block is shown in Figure 1. The input gate consists of an input gate and an input node (new 

memory network). The forget gate decides which pieces of the previous hidden state and new 

data point in the sequence have less or more weight. To do this, it receives the previous hidden 

state and new input data; then, this network generates a vector in the range from 0 to 1 using the 

sigmoid activation function. Finally, the network in the forget gate receives the information 

when it is closer to 1 and vanishes the irrelevant information closer to 0. The goal of the input 

gate is to add new information to the network’s long-term memory. After combining the 

previous hidden state and new input data, the input node generates a new memory update vector 

network with the help of the tanh activation function, which contains the essential information. 

The input node is not capable of remembering new information. That is why the input gate is 

sigmoid activated, which works as a filter and makes the new memory update vector network 

worth retaining. So, the resulting information should be input gate regulated. After pointwise 

multiplication of the vectors generated from the input gate and input node (6), the resultant 

vector is added to the cell state (5) to update the long-term memory of the network (7). The 

output gate used updated cell state, previous hidden state, and new input data to generate new 

hidden state. The output gate stores the relevant information using a sigmoid-activated neural 

network. The output gate generates a filter vector from the previous hidden state and current 

input. Finally, pass the updated cell state to the   tan ℎ  activation to force information to store 

between -1 to 1. Then the filter vector was applied to the updated cell state as a pointwise 

multiplication to generate a new hidden state as output (8). 



 

11 
 

𝑓𝑡 = 𝜎[(𝑤𝑓ℎℎ𝑡−1) + (𝑤𝑓𝑥ℎ𝑡−1) +  𝑏𝑓                    (1) 

𝑖𝑡 = 𝜎[(𝑤𝑖ℎℎ𝑡−1) + (𝑤𝑖𝑥ℎ𝑡−1) +  𝑏𝑖                       (2) 

𝑔𝑡 = tan ℎ [(𝑤𝑔ℎℎ𝑡−1) + (𝑤𝑔𝑥ℎ𝑡−1)+ 𝑏𝑔            (3) 

𝑜𝑡 = 𝜎[(𝑤𝑜ℎℎ𝑡−1) + (𝑤𝑜𝑥ℎ𝑡−1) +  𝑏𝑜                (4) 

𝐶𝑡
𝑓

= 𝑓𝑡𝐶𝑡−1                                                              (5) 

𝐶𝑡
𝑖 = 𝑖𝑡𝑔𝑡                                                                    (6) 

𝐶𝑡 = 𝐶𝑡
𝑖 + 𝐶𝑡

𝑓
                                                            (7) 

ℎ𝑡 = tan ℎ (𝐶𝑡)𝑜𝑡                                                     (8) 

 

 

Figure 1: Memory block [34] of a LSTM cell 

 

Every gate inside a memory block is controlled by a sigmoid activation network but the 

input node used the tan ℎ  activation unit. Each block receives the previous hidden state and 

current data as input sequences. The result of forget gate, input gate, input node, and output gate 
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are shown in (1)-(4) respectively. 𝜎 is a sigmoid and tan ℎ is a tan activation function. 

𝑤𝑓ℎ, 𝑤𝑖ℎ, 𝑤𝑔ℎ𝑎𝑛𝑑 𝑤𝑜ℎ are the weights for hidden state and 𝑤𝑓𝑥, 𝑤𝑖𝑥, 𝑤𝑔𝑥𝑎𝑛𝑑 𝑤𝑜𝑥 are the weights 

for input of the respective gates, ℎ𝑡−1 is the output at time step (𝑡 – 1) of the previous hidden 

state of LSTM block, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑔𝑎𝑛𝑑 𝑏𝑜 are biases for the respective gates and input is denoted by 

𝑥𝑡  at the current time step.  

2.4 Taguchi and Full Factorial Array Design of Experiment 

Any researcher can move for preliminary testing before beginning a massive experiment 

by using a unique type of experiment design called a Taguchi Orthogonal Array. Thus, using 

Taguchi Orthogonal Array, the experimental cost can be easily reduced. Various Taguchi 

orthogonal array types have been adopted by multiple scholars recently. Due to the employment 

of the Taguchi L9 orthogonal array by Weake, Tura, and Pazhamannil [1], [4], [19], respectively, 

who had three different process parameters with three different levels, the entire experimental 

run was reduced from 27 to 9.  Weake et al. [1] employed a Taguchi L9 orthogonal array to 

design an experiment to anticipate the ultimate tensile stress of the ABS material by optimizing 

process parameters such as layer thickness, building orientation, and printing temperature. For 

design, they used ASTM D-638 tensile standard specimens. Teharia et al. [2] employed the L27 

Taguchi Orthogonal Array as a design experiment with six different process parameters to cut 

the expense and duration of the investigation. L27 orthogonal array was utilized by Femi-

Oyetoro et al. [3] to reduce the experimental data. A full factorial array design of experiment 

utilized based on extruder temperature, material flow rate and printing speed for monitoring 

temperature and vibration data in FDM process [35]. 
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2.5 Instron Tensile Testing Machine 

Weake et al. [1] tested the tensile strength of polylactic materials in fused deposition 

modeling by breaking nine experimental prototypes with a SHIMADZU-AGX 10KN universal 

testing equipment. Giri et al.  [31] broke 27 samples using the computerized tensile testing 

machine 50KN to forecast the tensile strength using ANN. Pazhamannil et al. [4] used an 

electromechanical universal tensile testing machine to estimate the tensile strength of ABS 

material.  

2.6 SPI Surface Roughness Tester 

Teharia et al. [2] measured the surface roughness of 21 samples using the roughness test 

to estimate the surface roughness using ANN. Laser scanning microscopy (VK-X 200 K, 

Keyence, Japan) was used by Tura et al. [19] to assess the surface roughness of nine 

experimental trials. 

2.7 3D printing machine 

Before beginning the tensile test, Weake et al. [1] used an Aha 3D printer to manufacture 

all of their specimens. Twenty-seven prototype parts were printed on a Fusebot 250 printer [31]. 

The Ultimaker Cura software utilized FDM Flash forge creator pro, which is used by Tura et al. 

[19]. Pazhamannil et al. [4] printed the specimens on a Cube Pro dual printer. 

2.8 Dimension Measuring Machine 

Digital calipers were primarily used in earlier research to measure the printed specimens' 

dimensions [36], [37]. 
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2.9 Design and Coding Software 

PTC Creo was used by Mohamed et al. [11] to create the ASTM standard sample. 

Software such as Solid Works [38] and AutoCAD [39] was utilized by certain studies to design 

their specimen. The most popular coding languages for creating neural network models for 

training, validating, and testing data are MATLAB [40] and Python [41]. 

 

2.10 Design of Experiment Software 

The Taguchi L27 orthogonal array was used to design the experiment using Minitab. 

Weake et al. [1] used the L9 Taguchi Orthogonal Array in Minitab software to shorten their trial 

run. Minitab 18 was utilized by Pazhamannil et al. [4] to calculate the experiment run from L27 

to L9, while Minitab V19 was used by Giri et al. [31] to design the L27 orthogonal array. 
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3.METHODOLOGY 

 

3.1 Methodology for ANN Based Prediction Modeling 

3.1.1 Design of Specimen 

This study used the standard test method for the tensile characteristics of plastics, and the 

ASTM D638-14 Type I specimen design, as illustrated in Figure 2. Prior FDM research has also 

utilized standard specimens, such as ASTM D638-14 standard dog bones [2], [4], [19], to 

preserve consistency in the printing and measuring processes. The tensile qualities of plastics 

were examined on the Type I specimens that were 3D printed using a standard procedure. 

3.1.2 Material and printer 

The specimens in this study were 3D printed using PLA material because it is a popular 

and environmentally friendly 3D printing medium. The standard samples were printed using a 

Prusa i3 MK-3 3D printer. The following section's process parameter levels were chosen based 

on the PLA material's material characteristics. 

3.1.3 Selection of Process Parameter 

Five process parameters were chosen following the FDM process configuration: layer 

thickness (LT), nozzle/extruder temperature (ET), printing speed (PS), build orientation (BO), 

and deposition direction. (DD). Three alternative degrees of each processing parameter were 

chosen based on the characteristics of PLA. The minimum layer thickness was chosen based on 

the machine’s resolution. The nozzle diameter was used to determine the upper limit of layer 

thickness. 
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Figure 2 : Dimensions of the specimen include (a) Top View, (b) Front View, and (c) 3D 

View. 

To examine the impact of the layer thickness on the part attributes throughout a range of 

0.1 mm, three levels of the layer thickness—0.1 mm, 0.2 mm, and 0.3 mm—were chosen. The 

extruder temperatures were selected at 200°C, 210°C, and 220°C with an interval of 10°C for our 

studies because the printing temperature of PLA material spans from 180°C to 230°C. The Prusa 

3D printer's printing capabilities led to the selection of printing speeds of 40 mm/s, 60 mm/s, and 

(a)

(c)

(b)
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80 mm/s while retaining a 20 mm/s spacing. Productivity increases when printing speeds 

improve since it takes less time to create a part. The machine's capabilities set a limit on the 

maximum print speed, and going faster could lead to poorer material deposition. 

 

Figure 3 : Build orientations for experimental designs at 0°, 60°, and 90°  

The build orientations of 0°, 60°, and 90° about the X-axis were selected as indicated in 

Figure 3 to cover the entire build orientation range about one orthogonal axis in the standard 

coordinate system. For every 3D printed specimen, a zigzag infill structure with 50% relative 

density was applied. The zigzag infill structure's deposition direction was chosen at 0°, 30°, and 

45° (about along the Z-axis) to examine the impact of various infill angles on part properties. 
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The 0°, 30° and 45° deposition directions are followed, in turn, by 90°, 120°, and 135°, in the 

subsequent layers, as illustrated in Figure 4. Using PrusaSlicer Version 2.4.0, the sample 3D 

model was cut into slices while using all the selected process settings. Table 1 lists the process 

parameters and the chosen levels for each. While 0° and 90° build-oriented specimens were not 

given any support structure, 60° build-oriented samples were printed with it. 

 

Figure 4 : Zigzag infill structure: (a) 0°, (b) 90°, (c) 30°, (d) 120°, (e) 45°, and (f) 135° 

deposition directions 

 

Table 1 : Parameters of the process and their levels 

Parameter Unit Level 

Layer Thickness  mm 0.1/0.2/0.3 

Extruder Temperature °C 200/210/220 

Printing Speed mm/s 40/60/80 

Build Orientation  Degree (°) 0/60/90 

Deposition Direction Degree (°) 0/30/45 
 

0 90 

30°

(a)

(c)

(b)

45 

(f)(e)

135 

30 
120 

(c) (d)
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3.1.4 Experimental Design 

As a result of its excellent method for minimizing experimentation and choosing a unique 

combination of process parameters while considering no correlation among all the factors, the 

Taguchi Orthogonal Array was utilized as the design of the experiment. The Taguchi L27 

Orthogonal Array in Table 2 was produced using the Minitab Version 10.0.19044 software.  

Table 2: Design of Experiment for Taguchi L27 Orthogonal Array 

 

Specimen 

Layer 

Thickness 

Extruder 

Temperature 

Printing 

Speed 

Build 

Orientation 

Deposition 

Direction 

1 0.1 200 40 0 0 

2 0.1 200 40 0 30 

3 0.1 200 40 0 45 

4 0.1 210 60 60 0 

5 0.1 210 60 60 30 

6 0.1 210 60 60 45 

7 0.1 220 80 90 0 

8 0.1 220 80 90 30 

9 0.1 220 80 90 45 

10 0.2 200 60 90 0 

11 0.2 200 60 90 30 

12 0.2 200 60 90 45 

13 0.2 210 80 0 0 

14 0.2 210 80 0 30 

15 0.2 210 80 0 45 

16 0.2 220 40 60 0 

17 0.2 220 40 60 30 

18 0.2 220 40 60 45 

19 0.3 200 80 60 0 

20 0.3 200 80 60 30 

21 0.3 200 80 60 45 

22 0.3 210 40 90 0 

23 0.3 210 40 90 30 

24 0.3 210 40 90 45 

25 0.3 220 60 0 0 

26 0.3 220 60 0 30 

27 0.3 220 60 0 45 
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3.1.5 Experimental Setup 

Twenty-seven specimens with two replicas each were printed using a Prusa i3 MK3 3D 

printer. After calibration, a digital micrometer caliper was used to precisely measure the key 

measurements of the 3D printed specimen pieces, including overall length (OL), overall width 

(OW), narrow width (NW), and thickness (T). As illustrated in Figure 5, the average surface 

roughness (SR) of printed parts was measured along both lateral and transverse directions using 

an SPI Portable Roughness Tester II with a 0.0002′′ Stylus Tip Radius. 

The ultimate tensile (TS) strength of the printed specimens was evaluated using the 

Instron 5967 tensile testing apparatus, depicted in Figure 6. This equipment's specimen fixture is 

pneumatically operated. 40 PSI pressure was employed to keep the specimens between the jaws 

to avoid any slippage in the grips. At a crosshead speed of 5 mm/min, tensile tests were run. 

Several examples are shown in Figure 7, both before and after tensile testing. 

 

Figure 5 : Measurement of surface roughness in the specimen's (a) Lateral and (B) Transverse 

directions 

 

 

(a)

Roughness 

Tester Probe

(b)
Roughness 

Tester Probe
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Figure 6 : Tensile Testing: (a) Loaded specimen and (b) Fractured specimen before and after 

testing. 

 

Figure 7 : Specimens prior to (a) and post (b) tensile testing 

 

(a)

(b)

(a) (b)
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3.1.6 Artificial Neural Network Model 

To train, test, and validate the ANN models, the process parameter combinations of the 

experimental design (Table 2) were used as the inputs, and the corresponding experimental data 

(strength, surface roughness, and dimensional accuracy) of the 3D printed specimens were used 

as the outputs. The ANN codes were implemented using MATLAB 2021a. The neural Pattern 

Recognition (NPR) toolbox was used to predict the data. After inserting the experimental data in 

the ANN network, data was normalized for better learning the neural network. Then train the 

ANN model to find the minimum error between training and validation dataset. After finding the 

lowest error between train and validation dataset, the model predicts the output attributes based 

on test datasets. Then the predicted value was denormalized for comparing with the actual data. 

Three separate ANN models were created to forecast the distinct part attributes—ultimate tensile 

strength, dimensional correctness, and surface roughness. A combined ANN model was also 

designed to depict the link between the three-part qualities and the five process parameters. 15% 

of the data were chosen for validation, 15% for testing, and 70% for training the ANN models at 

random. Specifically, specimens 4, 9, 11, and 25 were utilized for validation, while specimens 7, 

16, 19, and 23 were used for testing. All additional samples were used for training. We identified 

the ideal number of hidden neurons after 70 iterations when the error between the training, 

validation, and test sets was as low as possible. Finally, the data were tested using the optimal 

number of neurons in the hidden layer [42]. 
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Figure 8 : Flow chart developed for ANN modeling. 

 

The signal was transferred from the input layer to the output layer through the hidden 

layer using the tangent sigmoid function in the hidden layer and a purely linear function in the 

output layer (all outputs were normalized). The information is often transferred from one neuron 

layer to another in ANN models using sigmoid and linear functions [43]. The artificial neural 

network modeling procedure described in this paper's flow chart is shown in Figure 8, and the 

proposed framework is illustrated in Figure 9. 
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Figure 9: Proposed framework for ANN modeling 

 

3.1.7 Loss Function and Correlation Coefficient Calculation 

 Mean square error (MSE) was used as a loss function in the developed ANN network. 

The MSE loss function is widely used as a loss function for regression analysis of the neural 

network. The average squared difference between the experimental and prediction data can be 

measured using the MSE loss function [44]. It can be expressed by using the following equation: 

Mean Square Error (MSE) =
1

𝑛
  ∑ (𝑥𝑒𝑗 − 𝑥𝑝𝑗)²𝑛

𝑗=1         (9) 

Here, n is the number of data points, 𝑥𝑒𝑗 is the value of experimental data and 𝑥𝑝𝑗 is the 

value of model predicted data. 

3D specimen model

3D print specimens with process 
parameter combinations using Taguchi’s 

Orthogonal Array Design   

Measure surface 
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Develop ANN models

Predict part attributes for any 
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The root means square error (RMSE) was used to determine the model’s accuracy in both 

studies, which is the root of the mean square error [45]. The following equation can express it: 

             Root Mean Square Error (RMSE) = √
1

𝑛
  ∑ (𝑥𝑒𝑗 − 𝑥𝑝𝑗)²𝑛

𝑗=1   (10) 

Here, n is the number of data points, 𝑥𝑒𝑗 is the value of experimental data and 𝑥𝑝𝑗 is the 

value of model predicted data. 

To quantify the relationship between experimental and model predicted data correlation 

coefficient (R) was used [46]. It can be expressed by the following equation: 

Correlation Coefficient (R) =  
∑ (𝑥𝑒𝑗−𝑥𝑒̅̅̅̅ )²(𝑥𝑒𝑗−𝑥𝑝̅̅ ̅̅ )𝑛

𝑗=1 ²

√∑ (𝑥𝑒𝑗−𝑥𝑒̅̅̅̅ )𝑛
𝑗=1

2
∑ (𝑥𝑝𝑗−𝑥𝑝̅̅ ̅̅ )𝑛

𝑗=1
2
      (11) 

Here, n is the number of data points, 𝑥𝑒𝑗 is the value of experimental data and 𝑥𝑝𝑗 is the 

value of model predicted data, 𝑥𝑒̅̅ ̅ is the value of average experimental data, and  𝑥𝑝̅̅ ̅ is the value 

of average model predicted data. 

3.2 Methodology for VLSTM Based Prediction Modeling 

3.2.1 Specimen Design 

In this study, ASTM D638-14 Type I standard was used to design the specimens (Figure 

2) to ensure printing consistency [10]. A PRUSA i3 MK-3 3D printer was used to print the 

standard specimens because of its ease of use, reliability, and automatic bed leveling system. 

Polylactic acid (PLA) material was used to 3D print the specimens as it is a widely available and 

environmentally friendly material. PLA is well suited for a wide range of 3D printing 
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applications. Process parameter levels were selected depending on the characteristics of the PLA 

material and printer configuration as discussed in the following section. 

Table 3: Process parameter setting for printed specimens. 

Parameter Value 

Layer thickness 0.1 mm 

Infill density 100% 

Deposition direction 0°,45° 

Printing speed 40 mm/s,80 mm/s 

Nozzle temperature  220°C 

Infill Pattern Rectilinear 

Build orientation 0° 

 

3.2.2 Process Parameters Selection 

Printing speeds (PS) and deposition directions (DD) were chosen after investigating the 

interaction plot (provided in section 4.2.2). It was found that printing speeds and deposition 

directions greatly influenced the printer bed vibration. Two levels of printing speeds, including 

40 mm/s and 80 mm/s, were selected according to the printing capabilities of the Prusa 3D 

printing machine. Deposition directions were chosen as 0° and 45° (about Z-axis). Each of these 

angles was accompanied by another set of deposition directions at 90° and 135°, respectively, in 

a crisscross pattern for successive layers of the print, as shown in Figure 4. Printer speeds and 

deposition directions were chosen at their highest and lowest limits to differentiate their effect on 

printer bed vibration. The 3D printed specimens in this study were prototyped using rectilinear 

infill structures with 100% relative density. PrusaSlicer Version 2.4.0 was used for slicing the 3D 

model. The selected two levels of printing speeds, deposition directions, and all other constant 

process parameters are listed in Table 3. A full factorial design of the experiment was used to 

generate the combinations of deposition directions and printing speeds, as shown in Table 4. 
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Table 4: Full factorial array design of experiment. 

Specimen Printing Speed 

(mm/s) 

Deposition 

Direction (°) 

1 80 45 

2 40 0 

3 80 0 

4 40 45 

 

3.2.3 Experimental Procedure and Data Acquisition 

This study investigated the impact of different printing speeds and deposition directions 

on machine vibrations while printing four dog bone prototype parts shown in Figure 11. Data 

was collected through a wireless vibration sensor (accelerometer-gyroscope), which recorded 

machine bed angular velocity data every second. To eliminate external vibration interference, the 

printing experiment was conducted on a Newport RS2000TM antivibration table. A high-

performance laptop with a core i7 processor was used for real-time data collection. The wireless 

sensor was mounted underneath the printer bed, as shown in Figure 10. The average angular 

velocity for x, y, and z directions was calculated during the post-processing stage of the collected 

data and used for training and testing of our developed time series model. Specimen 1 was used 

to develop the VLSTM model, while Specimens 2, 3, and 4 were utilized to verify the model’s 

accuracy. 



 

28 
 

 

Figure 10: Data collection procedure 

 

Figure 11: Printed specimens for the second study 

 

3.2.4 VLSTM Model Selection Procedure 

An optimized machine learning model has been developed for data-driven time series 

prediction of machine bed angular velocity. A special kind of recurrent neural network called 

vanilla long short-term memory (VLSTM) was selected for the process monitoring of FDM to 

overcome the long-term dependency problems of recurrent neural networks over time [47], [48]. 

The simulation was carried out on a laptop computer with an 11th Gen Intel(R) Core i7-11800H 

@ 2.30GHz processor having 16GB RAM. This research used the Python library Keras to 

develop the time series future angular velocity prediction model. The steps followed in selecting 
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the final VLSTM model are shown in Figure 12. The proposed framework described in Figure 13 

and Figure 14 shows the experimental and simulation phase of VLSTM modeling. 

 

Figure 12 : Schematic for VLSTM modeling 
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Figure 13 : Proposed framework for VLSTM modeling 

 

 

Figure 14 : Experimental and simulation phase in VLSTM modeling 
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3.2.5 Loss Function Calculation 

Mean square error (MSE) was used as a loss function in the developed VLSTM network. 

The average squared difference between the experimental and prediction data can be measured 

using the MSE loss function [44]. It can be expressed by using the following equation: 

Mean Square Error (MSE) =
1

𝑚
  ∑ (𝑦𝑒𝑘 − 𝑦𝑝𝑘)²𝑚

𝑘=1         (12) 

Here, m is the number of data points, 𝑦𝑒𝑘 is the value of experimental data and 𝑦𝑝𝑘 is the 

value of model predicted data. 

The root means square error (RMSE) was used to determine the model’s accuracy in both 

studies, which is the root of the mean square error [45]. The following equation can express it: 

             Root Mean Square Error (RMSE) = √
1

𝑚
  ∑ (𝑦𝑒𝑘 − 𝑦𝑝𝑘)²𝑚

𝑘=1    (13) 

Here, m is the number of data points, 𝑦𝑒𝑘 is the value of experimental data and 𝑦𝑝𝑘 is the 

value of model predicted data. 
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CHAPTER 4. RESULTS & DISCUSSION 

 

4.1 Results and Discussion for ANN modeling 

4.1.1 Artificial Neural Network Model 

To train the network and determine the ideal number of neurons in the hidden layer, a 

rule of thumb [42] was used. One hidden layer with six neurons and a tangent sigmoid transfer 

function performed the best for the combined output model after 70 epochs of training our 

generated artificial neural network models. A feed-forward neural network was used to 

determine the discrepancy between the experimental and predicted data. The weights were then 

adjusted via backpropagation, and the error was minimized by repeating the process. After 

examining several ANN network topologies, the ideal number of neurons in the hidden layer was 

discovered. Topological optimization with two and three hidden layers was also examined during 

the simulation phase. As shown in Table 5, the dimension accuracy prediction model, the surface 

roughness prediction model, and the tensile strength prediction model were all found to work 

best with the topological combinations 5-4-1, 5-9-4, and 5-7-1. Here, the input, hidden, and 

output layers' respective numbers of neurons are represented by the model topology's first, 

second, and third digits. Levenberg-Marquardt, Bayesian regularization, one-step secant, and 

gradient descent techniques were used to train the models where Levenberg-Marquardt 

performed better than the others. 

Based on ANN model prediction data, root mean square error and correlation coefficient 

were determined to evaluate the model performance. The training data's decreased RMSE proved 

the artificial neural network's proper training. For all the models, the Pearson correlation 
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coefficient was close to one. Table 3 displays the RMSE findings for the four models and 

transfer function combinations. The optimized combined output model's ANN topology is shown 

in Figure 15. The three component qualities can be predicted using the combined output model, 

which should be very helpful for industrial businesses or a single user. The average surface 

roughness, tensile strength, and dimension accuracy forecasts in the combined ANN model 

performed almost equally well compared to the actual data, which increased the acceptance of 

the model, as shown in Figure 16. For all the datasets, including training, validation, and testing, 

the average root mean square error (RMSE) of the four distinct dimensions was determined to be 

0.143289, the RMSE of the average surface roughness was 0.319013, and the RMSE of the 

tensile strength was 0.481639. The neural network regression plot analysis revealed that the 

model's gradient was at its lowest at epoch 5. When the least mean square error was determined 

among the training, validation, and testing data at epoch 5, the best validation performance was 

discovered to be 0.28312. 

Table 5 : For the four models, optimized ANN topology with transfer function 

Output 

prediction 

Topological 

combination 

Transfer 

Function 

(hidden 

layer) 

Transfer 

Function 

(output 

layer) 

RMSE 

Dimensional 

Accuracy Model 
5-9-4 tansig purelin 0.140095 

Surface 

Roughness 

Model 

5-4-1 tansig purelin 0.286078 

Tensile Strength 

Model 
5-7-1 tansig purelin 0.421935 

Combined 

Output Model 

 

5-6-6 tansig purelin 

0.143289 

(Dimension Accuracy) 

0.319013 

(Surface Roughness) 

0.481639 

(Tensile Strength) 
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The average root mean square error (RMSE) of four different dimensions for the 

individual model for dimensional accuracy was discovered to be 0.140095 for all the data points, 

including training, validation, and testing, which is more accurate than the combined prediction 

model. At epoch 4, the model has attained its gradient minimum. When the dataset's minimal 

mean square error was discovered at epoch 4, the best validation performance was determined to 

be 0.37542. 

 

Figure 15 : ANN topology for optimized combined prediction model. 

 

Figure 17 illustrates how well the experimental result and ANN projected average surface 

roughness findings agreed. It was discovered that the prediction error for the average surface 
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roughness using the individual model was lower than the forecast using the combined model. 

The average surface roughness model's root means square error (RMSE), less than the combined 

prediction model, was determined to be 0.286078 for all the data points, including training, 

validation, and testing. The study of the neural network regression plot revealed that epoch 4 was 

the model's minimal gradient. The least mean square error among training, validation, and testing 

data was determined to be 0.026448 at epoch 3 when the best validation performance was 

discovered. 

 (a)
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(b)

(c)



 

37 
 

 

 

12.80

13.00

13.20

13.40

13.60

13.80

14.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27

N
a

rr
o

w
 W

id
th

(m
m

)

Number of Specimen

Experimental

Predicted

(e)



 

38 
 

 

Figure 16 : Actual and predicted data for surface roughness (a), tensile strength (b), overall 

length (c), overall width (d), narrow width (e), and thickness (f) from the combined output 

model. 

 

 

Figure 17 : Actual and predicted data for surface roughness model. 
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Figure 18 : Actual and predicted data for tensile strength model. 

The root means square error analysis showed that the ANN model outperformed the 

combined model in predicting tensile strengths. As seen in Figure 18, the expected outcome was 

indistinguishable from the experimental findings, which increased the model's accuracy. The 

tensile strength model's root means square error (RMSE), which outperformed the combined 

prediction model, was determined to be 0.286078 for all data points. At epoch 4, the model's 

gradient was at its lowest point. At epoch 4, the smallest mean square error across training, 

validation, and testing data was identified, and the best validation performance was determined 

to be 0.46953. Additionally, it was discovered that the critical factor contributing to accurate 

prediction was the range of fluctuation of any output qualities. The RMSE values for the 

combined model and the normalized dataset's tensile strength model were very low, at 0.02028 

(combined model) and 0.017766 (tensile strength model), respectively. Figure 19 explains how 

accurately the dimensional accuracy model predicted the experimental data. 
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Figure 19 : Actual and predicted data for dimensional accuracy model: (a) overall length, 

(b) overall width, (c) narrow width, (d) thickness. 

4.1.2 Effect of Process Parameters on Average Surface Roughness 

According to Figure 21, the most critical process variables for determining the average 

surface roughness of the constructed specimen were layer thickness and deposition direction. 

The average surface roughness of the component was enhanced by increasing layer thickness and 

deposition direction. Low layer thickness and deposition direction supported the high surface 

finish level. The atoms’ distribution in the bottom layer thickness and deposition direction was 

uniform. The interaction plot in Figure 20 demonstrated that for layer thicknesses of.2 and.3 mm, 

surface quality declined as the deposition direction increased from 30 to 45 degrees. The quality 

of the part's surface was less significantly impacted by extruder temperature. The product's 
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surface quality improved as the extruder's temperature rose. The nature of the atoms became 

more orderly and well-structured in each layer as the extruder's temperature climbed. As a result, 

surface roughness decreased as the extruder temperature increased. According to our analysis, 

surface roughness was most significant at a build orientation of 60 degrees. At a 60-degree 

build orientation, the support structure was mainly responsible for the most significant surface 

roughness. In a 90-degree construction orientation, the surface roughness marginally decreased. 

The build orientation with a zero-degree angle had the least surface roughness. The specimen's 

surface quality was less affected by printing speed, although slower printing produced a high-

quality surface finish product. 

 

Figure 20 : Interaction plot between layer thickness and deposition direction for average surface 

roughness 
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Figure 21 : Main effect plot of average surface roughness 

4.1.3 Effect of Process Parameters on Tensile Strength 

For enhancing the tensile strength of mechanical components, layer thickness, build 

orientation, and deposition direction (Figure 23) had the most significant effects. Although 

tensile strength increased with lower layer thickness but grew as build orientation and deposition 

direction increased. Lower layer thickness enhances interlayer adhesion and strengthens the part 

overall, whereas build orientation and deposition direction determine how the layers are oriented 

in reference to the applied force. Figure 22's interaction plot demonstrated that the maximum 

tensile strength was found in layers of .1mm thickness with 45-degree deposition directions. In 

contrast, the lowest tensile strength was found in layers of .3mm thickness with a 0-degree 

deposition direction. High extruder temperature makes strong atomic bonds which enhance the 

tensile strength of our constructed specimen. The strength of materials is marginally increased by 

faster printing; however, this influence is not as significant as that of other process variables. In 
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our research, we found that the maximum tensile strength of the materials is due mainly to the 

210-degree extruder temperature of our specimen, with 200 and 220 degrees having a 

lesser effect on increasing tensile strength. At an extruder temperature of 210 degrees, the tensile 

strength was at its highest; extruder temperatures of 200 and 220 degrees had less of an impact. 

This is probably because the substance employed has a particular temperature range in which it 

demonstrates its optimum mechanical characteristics. Low temperatures may prevent the 

material from melting sufficiently, leading to poor layer adhesion and fragile sections. When 

temperatures rise over the ideal range, the material may melt excessively, leading to over-

extrusion and a reduction in the part's strength. As a result, the material being utilized has 

reached its ideal temperature range of 210 degrees, enabling the finest possible combination of 

melting and flow qualities. 

 

Figure 22 : Interaction plot between layer thickness and deposition direction for tensile 

strength 
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Figure 23 : Main effect plot of tensile strength 

4.1.4 Effect of Process Parameters on Dimensional Accuracy 

Although overall length accuracy declined as printing speed and extruder temperature 

rose, it increased with the layer thickness, deposition direction, and build orientation, as shown in 

Figure 24. The length accuracy of the printed part often decreases when extruder temperature 

and printing speed are raised. This is because rapid cooling and solidification from higher 

printing temperatures and rates can leave less time for the material to settle and connect with 

itself. This can result in dimensions that are off. The length accuracy of the printed part can be 

enhanced by increasing layer thickness, deposition direction, and construction orientation. 

Greater interlayer adhesion and less warping can be caused by thicker layer heights, which will 

produce more precise dimensions. Furthermore, printing in a specified deposition direction or 
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build orientation can reduce the effect of gravity or other external forces on the part during 

printing, leading to more precise dimensions.  

 

Figure 24 : Main effect plot of overall length 

 

According to Figure 25, overall width accuracy increased with the increase in layer 

thickness, extruder temperature, and build orientation but fell with the decrease in deposition 

direction and printing speed. The precision of the printed part's width generally increases with 

layer thickness. The material deposition and adhesion between adjacent layers are improved by 

thicker layers. The improved interlayer adhesion keeps the printed part's desired width constant. 

Increased extruder temperatures also aid in improving width accuracy. An increase in extruder 

temperature makes the material more fluid and simpler to flow, which improves filling of the 

appropriate width. Greater material flow and deposition at higher temperatures aid in producing 
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dimensions that are more precise. By minimizing the effect of gravity on the printed object, 

specific building orientations lessen distortion. However, reducing the printing speed and 

deposition direction can have a negative impact on width accuracy. Overhanging or unsupported 

structures may result from lower deposition direction, which is the angle at which the material is 

deposited on the preceding layer. This could result in the printed part's width differing from its 

intended dimensions. Similar to this, faster printing rates may leave less time for each layer to 

adequately cool and solidify. Because of the limited cooling time, the material may twist or bend, 

giving the widths an incorrect reading. The ideal setting for precisely forecasting the final 

product's overall width was 0.1 mm layer thickness, 210°C extruder temperature, 60 mm/s 

printing speed, 0° build orientation, and 45° deposition direction. 

 

Figure 25 : Main effect plot of overall width 
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According to Figure 26, the ASTM standard specimen's narrow width accuracy increased 

when building orientation and printing speed decreased. The precision of the narrow width was 

also improved by increased layer thickness and deposition direction. The narrow width accuracy 

was less affected by extruder temperature, although 210 degrees produced the most remarkable 

results. Narrow width accuracy often increases when building orientation and printing speed 

decrease. This is a way to ensure the risk of distortion or warping of narrow features is 

diminished. Slower printing speeds and horizontal build orientations give the material more time 

to cool and solidify appropriately. As a result, narrow-width features may have more precise 

dimensions. Narrow-width accuracy can also be increased by increasing layer thickness and 

deposition orientation. More material per layer is provided by thick layers, which improve 

interlayer adhesion and bonding and allow for more precise dimensioning of features with 

narrow widths. To provide optimal support and adhesion for narrow features and further increase 

precision, consider the deposition direction, which is the angle at which the material is deposited 

on the preceding layer. The accuracy of narrow width is only marginally affected by extruder 

temperature. This is because printing speed and layer thickness, as opposed to extruder 

temperature, have a greater impact on material flow and deposition at narrow widths. To 

maintain optimal melting and flow qualities, it is still crucial to make sure the extruder 

temperature is within the acceptable range for the individual material being utilized. 
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Figure 26 : Main effect plot of narrow width 

 

The main effect plot demonstrated that the ideal parameters for accurately measuring the 

thickness of the produced specimen were 0.2 mm layer thickness, 220 °C extruder temperature, 

80 mm/s printing speed, 60 ° build orientation, and 30 ° deposition direction. (Figure 27). A 

relatively thin layer thickness of 0.2 mm offers enough resolution to measure the thickness of the 

printed specimen. The material is adequately melted and extruded at a steady rate when the 

extruder is heated to a temperature of 220 °C, which is suitable for the material being utilized. 

With a printing speed of 80 mm/s, the specimen may be printed quickly and effectively without 

sacrificing the precision of the thickness measurement. The ideal build orientation is at a 60-

degree angle since it lessens the distortion that might impair the precision of the thickness 

measurement by lessening the effect of gravity on the printed item. The adequate support and 



 

51 
 

adherence of the printed layers are ensured by the 30° deposition orientation, which might 

potentially affect the precision of the thickness measurement. 

 

Figure 27 : Main effect plot of thickness 

4.2 Results and Discussion for VLSTM modeling 

4.2.1 VLSTM Modeling  

In the second research, angular velocity vibration data of the printer bed was collected for 

specimens printed with four different combinations of printing speeds and deposition directions. 

The vibration data of specimen one was then used to train and test our developed VLSTM 

model. The model was trained using 70% of angular velocity data collected from the first four 

layers of the FDM printed parts and tested using the remaining 30% of angular velocity data 

collected from the fifth to sixth layers. Results showed that the testing dataset had excellent 

accuracy, particularly after training for an extended period.  
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It is essential to adjust the hyperparameters of any neural network based on the available 

dataset. All the adjusted parameters are listed in Table 7. One input layer, one hidden layer with 

four LSTM blocks, and one output layer demonstrated the time series dataset's significant 

machine angular velocity prediction capacity for producing FDM parts. After reshaping the input 

sample, the input layer of this network took a three-dimensional shape as input, where the first 

dimension represented the batch size, the second dimension meant the time step, and the third 

dimension represented the number of data used in the input sequence. To evaluate the pattern 

learning ability of our VLSTM network, we assessed the validation loss and root mean square 

error (RMSE). Our analysis indicates that the validation loss of our model is 0.0015, while the 

RMSE is found to be 0.062638, as shown in Table 6 (Specimen 1). These metrics serve as 

indicators of accuracy and suggest that the model can effectively learn and predict patterns in the 

data.  

According to the findings of this study, the VLSTM model accurately predicts machine 

bed angular velocity based on the experimental data. Despite the high density of clustered data 

points, the model successfully replicated the patterns observed in the actual data. To illustrate the 

accuracy of the predictions, the predicted angular velocity data points for the last 100 test data 

are presented in Figure 28 (a). The experimental angular velocity data from Specimens 2, 3, and 

4 were inserted in the developed model to check the time series prediction capabilities for 

different unknown printer speeds and deposition directions. Our developed model demonstrated 

excellent prediction results, as indicated by the lower RMSE value in Table 3s. The predicted 

test datasets are depicted in Figures 28 (b), (c), and (d). The time series data utilized for 

Specimens 2, 3, and 4 consisted of 800 data points. For specimens 2 and 4, training data was 

collected from the first three layers, and testing data was collected from the fourth layer. 
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However, for specimen 3, training data was collected from the first four layers, and testing data 

were collected from the fifth to sixth layers. as shown in Table 6. 

Table 6 : Printing layer data used for training and testing along with RMSE results of all the 

dataset. 

Specimen Printing 

layers used 

for training 

Printing layers 

used for testing 

Total datasets used 

in LSTM network 

RMSE 

1 1-4 5-6 800 0.062638 

2 1-3 4 800 0.039666 

3 1-4 5-6 800 0.049107 

4 1-3 4 800 0.034696 

 

 

(a) 
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(b) 

(c) 
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Figure 28 : Actual vs model predicted data for last 100 second test data for (a) specimen 

1 (b) specimen 2 (c) specimen 3 (d) specimen 4. 

Table 7 : Parameter setting for time series data prediction with VLSTM. 

Hyperparameter Value 

Train to total data ratio 70% 

Test to total data ration 30% 

Optimizer ADAM 

Learning rate 0.001 

Batch size 2 

Number of epochs 100 

Amount of total train data prediction 560 

Amount of total test data prediction 240 

Amount of total data 800 

Data normalization range 0-1 

 

(d) 
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4.2.2 Effect of Process Parameters on Printer Vibration  

Based on the experimental investigation (Table 8), it was observed that maintaining a 

constant printing speed of 80 millimeters per second while changing the deposition direction 

from 45 to 0 degrees resulted in a higher average level of vibrations compared to maintaining a 

constant printing speed 40 millimeters per second. The main reason was that the nozzle had to 

change directions more frequently at the higher printer speed, which increased the printer bed's 

angular velocity (and thus the vibrations). On the other hand, the printer bed vibrated less when 

printing at a slower speed since the nozzle had more time to shift directions. When maintaining a 

constant deposition direction of 0 degrees and changing the printing speed from 40 to 80 degrees, 

it showed a higher average level of vibrations than maintaining a constant deposition direction of 

45 degrees. The reason was that the nozzle head produced more kinetic energy as the nozzle 

head's velocity increased, which was then transmitted to the printer bed and finally resulted in 

higher levels of angular velocity. The nozzle head was going straight forward without changing 

direction if the deposition direction remained constant at 0 degrees. This resulted in the kinetic 

energy produced by the nozzle head being focused on a single path toward the printer bed, which 

can induce vibrations and even higher levels of angular velocity. Regarding specimen 2, a 

negative mean angular velocity indicated that the amplitude of the oscillations observed in the 

printer bed is more significant in the negative x, y, and z axes, relative to the positive x, y, and z 

axes. This could be caused by the uneven distribution of material weights in the printer bed. 
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Table 8 : Mean angular velocity of the specimen. 

Specimen Printing 

Speed 

(mm/sec) 

Deposition 

Direction 

(deg) 

Mean 

Angular 

Velocity 

(deg/sec) 

1 80 45 0.00301 

2 40 0 -0.00089 

3 80 0 0.01030 

4 40 45 0.00057 

 

The interaction plot in Figure 29 showed that at 40 millimeters per second printing speed, 

when deposition direction increased from 0 to 45 degrees, mean angular velocity increased. So, 

the printer head must change directions more frequently when the deposition direction is 

changed from 0 to 45 degrees. This causes the printer head to generate more kinetic energy, 

which is then transferred to the printer bed and ultimately leads to higher vibrations.  But, at 80 

millimeters per second printing speed, data mean angular velocity decreased when deposition 

direction increased from 0 to 45. The printer head generated more kinetic energy at higher 

printing speeds, causing the printer bed to vibrate more. However, when the deposition direction 

was changed from 0 to 45 degrees, the printer head changed direction more frequently, which 

caused the kinetic energy to be distributed more evenly in different directions. This reduced the 

amplitude of vibrations because of the destructive nature of opposite kinetic energy in any single 

direction, resulting in a lower mean angular velocity. It was observed that the machine had a zero 

angular velocity in several printing layers when using a 0-degree deposition direction, which 

suggested that the machine was not experiencing any vibrations. 
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Figure 29 : Interaction plot between deposition direction and mean angular velocity 

making printing speed constant. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 

 

5.1 Conclusion and Future Work of First Study 

The impact of layer thickness, extrusion temperature, printing speed, build direction, and 

deposition direction on the dimension accuracy, surface quality, and tensile strength of additively 

made components was examined in this study. Artificial neural network models were created 

using experimental data to depict the connection between these process factors and component 

properties. The training, validation, and testing outcomes for the proposed ANN models 

approximately match the experimental data, according to the root means square error (RMSE) 

analysis. Regarding the RMSE and correlation coefficient for the training, testing & validation 

data, the ANN models for the individual part characteristics outperformed the model for 

combining the three output part attributes. 

We can summarize the following conclusions from our investigation:  

a) The main effect plot result showed that to produce parts with superior surface quality, 

layer thickness, printing speed, build orientation, and deposition direction must be kept to 

a minimum. However, greater extruder temperatures produced pieces of exceptional 

quality. Therefore, the ideal combination of.1mm layer thickness, 220°C extruder 

temperature, 40 mm/s printing speed, 0° build orientation, and 0° deposition direction 

was found to make the best surface finish items. 

b) Although the 210-degree extruder temperature of our manufactured specimen offered the 

best tensile strength, the main effect plot result revealed that increased printing speed, 

build orientation, and deposition direction created high tensile strength products. The 
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maximum tensile strength of materials was determined to be mostly due to decreased 

layer thickness. According to the results of our study, the mechanical characteristics of 

the produced specimen are improved by layer thicknesses.1 mm, 210°C extruder 

temperatures, 80 mm/s printing speeds, 90° construction orientations, and 45° deposition 

directions. 

c) The main effect plot findings showed that extruder temperature and deposition direction 

significantly influenced prototype parts' dimensional accuracy. Our research revealed that 

a 210° Celsius extruder temperature and a 45° deposition orientation were required to 

obtain the specimen's precise dimensions as a CAD model after fabricating an actual 

item. On the specimen's dimensional accuracy, layer thickness, printing speed, and build 

orientation had less of an impact. 

d) It was discovered via RMSE that separate ANN models performed better than the 

combined model.  

 

Future research should conduct further experiments to expand the size of the experimental 

dataset to enhance the accuracy of the ANN models because the practical dataset size in this 

study was constrained. Additionally, comparable predictive models may be used with various 

additive manufacturing processes. 

5.2 Conclusion and Future Work of Second Study 

The second study examined how process parameters of FDM technology affect the machine 

bed angular velocity based on time series data in FDM printing. A VLSTM neural network was 

developed to forecast the angular velocity data of future layers by using one combination of 

printing speed and deposition direction from a full factorial design. The model’s accuracy was 



 

61 
 

evaluated using RMSE, and the results indicated that predicted values closely matched the actual 

data. Moreover, testing the remaining printing speeds and deposition directions in the same 

model demonstrated the model’s reliability and suitability for individual users. 

The results of our investigation led to the following conclusions: 

a) The analysis of RMSE results showed that A VLSTM network with one input layer, one 

hidden layer, and one output layer provided the most accurate prediction of machine bed 

angular velocity based on various unexplored infill patterns. 

b) Interaction plots depicting the relationship between mean angular velocity and printer 

speed showed that as the printer speed increased, the mean angular velocity also 

increased.  

c) For a deposition direction of 0 degrees, the angular velocity fluctuations remained zero 

for several layers after a certain period. 

       A limitation of this study was the significant simulation time required to tune the 

hyperparameters of the VLSTM network properly. Future research should focus on reducing this 

study's simulation time and using other new process parameters. Moreover, a similar model 

could be applied to time series temperature prediction in laser powder bed fusion technology. 
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