41 research outputs found
Maternal exposure to polychlorinated biphenyls and the secondary sex ratio: an occupational cohort study
Though commercial production of polychlorinated biphenyls was banned in the United States in 1977, exposure continues due to their environmental persistence. Several studies have examined the association between environmental polychlorinated biphenyl exposure and modulations of the secondary sex ratio, with conflicting results.
Our objective was to evaluate the association between maternal preconceptional occupational polychlorinated biphenyl exposure and the secondary sex ratio.
We examined primipara singleton births of 2595 women, who worked in three capacitor plants at least one year during the period polychlorinated biphenyls were used. Cumulative estimated maternal occupational polychlorinated biphenyl exposure at the time of the infant's conception was calculated from plant-specific job-exposure matrices. A logistic regression analysis was used to evaluate the association between maternal polychlorinated biphenyl exposure and male sex at birth (yes/no).
Maternal body mass index at age 20, smoking status, and race did not vary between those occupationally exposed and those unexposed before the child's conception. Polychlorinated biphenyl-exposed mothers were, however, more likely to have used oral contraceptives and to have been older at the birth of their first child than non-occupationally exposed women. Among 1506 infants liveborn to polychlorinated biphenyl-exposed primiparous women, 49.8% were male; compared to 49.9% among those not exposed (n = 1089). Multivariate analyses controlling for mother's age and year of birth found no significant association between the odds of a male birth and mother's cumulative estimated polychlorinated biphenyl exposure to time of conception.
Based on these data, we find no evidence of altered sex ratio among children born to primiparous polychlorinated biphenyl-exposed female workers
FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation
The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program
Tolylfluanid permeates human skin slowly and as dimethylamino sulfotoluidid (DMST).
Tolylfluanid (TF) is a sensitizing biocide used in antifouling products and wood preservatives. Paint application is associated with skin exposure; however, the importance of this exposure route is uncertain as TF skin permeation rates are lacking in the peer-reviewed scientific literature. TF is a lipophilic powder that hydrolyses rapidly in contact with water to dimethylamino sulfotoluidid (DMST). DMST is also a TF metabolite. We characterized TF and DMST skin permeation using an ex vivo flow-through diffusion system with viable and frozen human skin. TF permeated as DMST with a low permeation rate (0.18 ± 0.05 μg/cm <sup>2</sup> /h) and a moderate time lag (7.1 ± 1.4 h) in viable human skin. Applying DMST gave a 3.5-fold lower permeation rate (0.05 ± 0.01 μg/cm <sup>2</sup> /h) compared to TF under a similar experimental setting. We simulated paint activities in an exposure chamber to understand a possible skin exposure from airborne TF concentrations. Although, paint can deposit onto the skin during work activities, TF permeation when paint was applied to human skin ex vivo was very low (as TF: 0.004 ± 0.005 μg/cm <sup>2</sup> /h, and as DMST: 0.02 ± 0.001 μg/cm <sup>2</sup> /h). Our results show that TF can permeate skin, and consequently, can contribute to sensitization, which support previous reports on sensitization in TF exposed workers
Human skin permeation rates ex vivo following exposures to mixtures of glycol ethers.
Skin exposure to cleaning products in the general and occupational population are a public health concern. Among the most frequently identified amphiphilic organic solvents in cleaning products are propylene glycol monomethyl ether (PGME) and propylene glycol n-butyl ether (PGBE). Internal dose from skin exposure may be efficiently evaluated using in vitro flow-through diffusion cells with excised human skin. Our aim in this study was two-fold; 1) characterize the permeation rates (J), time lag (T <sub>lag</sub> ), and permeation coefficients (Kp) of PGME and PGBE in human ex-vivo skin permeation assays, and 2) determine a possible mixture effect on skin permeation characteristics when applied together. Our results showed a short T <sub>lag</sub> for PGME and was reduced further depending on the amount of PGBE in the mixture (T <sub>lag</sub> was reduced from 2 h to 1-1.7 h) for fresh skin. PGBE T <sub>lag</sub> slightly increased when mixed with 50 % or more PGME. Permeation rate decreased to half for both PGME and PGBE in mixture at any concentration. This substantial permeation was greater with previously frozen skin. This mixture effect could favor permeation of other compounds through human skin
Development of a retrospective job exposure matrix for PCB-exposed workers in capacitor manufacturing
Polychlorinated biphenyls (PCBs) are considered probable human carcinogens by the International Agency for Research on Cancer and one congener, PCB126, has been rated as a known human carcinogen. A period-specific job exposure matrix (JEM) was developed for former PCB-exposed capacitor manufacturing workers (n=12,605) (1938-1977).
A detailed exposure assessment for this plant was based on a number of exposure determinants (proximity, degree of contact with PCBs, temperature, ventilation, process control, job mobility). The intensity and frequency of PCB exposures by job for both inhalation and dermal exposures, and additional chemical exposures were reviewed. The JEM was developed in nine steps: (1) all unique jobs (n=1,684) were assessed using (2) defined PCB exposure determinants; (3) the exposure determinants were used to develop exposure profiles; (4) similar exposure profiles were combined into categories having similar PCB exposures; (5) qualitative intensity (high-medium-low-baseline) and frequency (continuous-intermittent) ratings were developed, and (6) used to qualitatively rate inhalation and dermal exposure separately for each category; (7) quantitative intensity ratings based on available air concentrations were developed for inhalation and dermal exposures based on equal importance of both routes of exposure; (8) adjustments were made for overall exposure, and (9) for each category the product of intensity and frequency was calculated, and exposure in the earlier era was weighted.
A period-specific JEM modified for two eras of stable PCB exposure conditions.
These exposure estimates, derived from a systematic and rigorous use of the exposure determinant data, lead to cumulative PCB exposure-response relationships in the epidemiological cancer mortality and incidence studies of this cohort
Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers
Background: The aim of this work was to examine the risk of lymphohaematopoietic (LH) cancer according to benzene exposure among offshore workers. Methods: Cancer registry data were used to identify 112 cancer cases diagnosed during 1999–2011 in a cohort of 24 917 Norwegian men reporting offshore work between 1965 and 1999. Analyses were conducted according to a stratified case–cohort design with a reference subcohort of 1661 workers. Cox regression was used to estimate hazard ratios with 95% confidence intervals, adjusted for other benzene exposure and smoking. Results: Most workers were exposed to benzene for <15 years. The upper range values of average intensity and cumulative exposure were estimated to 0.040 p.p.m. and 0.948 p.p.m.-years, respectively. Risks were consistently elevated among exposed workers for all LH cancers combined and for most subgroups, although case numbers were small and yielded imprecise risk estimates. There was evidence of dose-related risk patterns according to cumulative exposure for acute myeloid leukaemia (AML), multiple myeloma (MM) (P trends 0.052 and 0.024, respectively), and suggestively so for chronic lymphocytic leukaemia (CLL) according to average intensity (P trend 0.094). Conclusions: Our results support an association between cumulative and intensity metrics of low-level benzene exposure and risk for AML, MM, and suggestively for CLL