13 research outputs found

    A Weakened Transcriptional Enhancer Yields Variegated Gene Expression

    Get PDF
    Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH) locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life) of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated) forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, ∼1.4 kb 3′ of the promoter, but inactive ∼6 kb 3′, indicating that the activity of the core enhancer was distance-dependent. A longer segment – the core enhancer plus ∼1 kb of 3′ flanking material, including the 3′ matrix attachment region – was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3′ flank includes binding sites for at least two activators

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit

    Overview of biologically digested leachate treatment using adsorption

    Get PDF
    Biological process is effective in treating most biodegradable organic matter present in leachate; however, a significant amount of ammonia, metals and refractory organic compounds may still remain in this biologically digested leachate. This effluent cannot be released to receiving bodies until the discharge limit is met. Several physical/chemical processes have been practiced as post-treatment to remove the remaining pollutants including coagulation–flocculation, oxidation and adsorption. Adsorption is often applied in leachate treatment as it enhances removal of refractory organic compounds. This chapter will focus on works related to adsorption as one of the commonly used methods to treat biologically digested leachate further down to acceptable discharge limit

    Broad targeting of resistance to apoptosis in cancer

    No full text
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
    corecore