152 research outputs found

    On-glass optoelectronic platform for on-chip detection of DNA

    Get PDF
    Lab-on-chip are analytical systems which, compared to traditional methods, offer significant reduction of sample, reagent, energy consumption and waste production. Within this framework, we report on the development and testing of an optoelectronic platform suitable for the on-chip detection of fluorescent molecules. The platform combines on a single glass substrate hydrogenated amorphous silicon photosensors and a long pass interferential filter. The design of the optoelectronic components has been carried out taking into account the spectral properties of the selected fluorescent molecule. We have chosen the [Ru(phen)2(dppz)]2+ which exhibits a high fluorescence when it is complexed with nucleic acids in double helix. The on-glass optoelectronic platform, coupled with a microfluidic network, has been tested in detection of double-stranded DNA (dsDNA) reaching a detection limit as low as 10 ng/μL

    Microfluidic cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection of viral DNA

    Get PDF
    Portable and simple analytical devices based on microfluidics with chemiluminescence detection are particularly attractive for point-of-care applications, offering high detectability and specificity in a simple and miniaturized analytical format. Particularly relevant for infectious disease diagnosis is the ability to sensitively and specifically detect target nucleic acid sequences in biological fluids. To reach the goal of real-life applications for such devices, however, several technological challenges related to full device integration are still to be solved, one key aspect regarding on-chip integration of the chemiluminescence signal detection device. Nowadays, the most promising approach is on-chip integration of thin-film photosensors. We recently proposed a portable cartridge with microwells aligned with an array of hydrogenated amorphous silicon (a-Si:H) photosensors, reaching attomole level limits of detection for different chemiluminescence model reactions. Herein, we explore its applicability and performance for multiplex and quantitative detection of viral DNA. In particular, the cartridge was modified to accommodate microfluidic channels and, upon immobilization of three oligonucleotide probes in different positions along each channel, each specific for a genotype of Parvovirus B19, viral nucleic acid sequences were captured and detected. With this system, taking advantage of oligoprobes specificity, chemiluminescence detectability, and photosensor sensitivity, accurate quantification of target analytes down to 70 pmol L-1 was obtained for each B19 DNA genotype, with high specificity and multiplexing ability. Results confirm the good detection capabilities and assay applicability of the proposed system, prompting the development of innovative portable analytical devices with enhanced sensitivity and multiplexed capabilities

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems

    Integration of amorphous silicon balanced photodiodes and thin film heaters for biosensing application

    Get PDF
    This work presents the development and testing of an integrated system for on-chip detection of thermochemiluminescent biomolecules. The activation energy of the reaction is provided by a transparent structure of thin film heaters deposited on one side of a glass substrate. Light, passing through the substrate, reaches an array of amorphous silicon differential structure deposited on the opposite side of the glass substrate. The structure is designed to perform differential current measurements between a light- shielded diode, whose current is sensitive only to temperature, and a photosensor, sensitive to both incident light and temperature. The device therefore balances the thermal variations of the photodiode current and reduces the dark-current noise. These features make the presented system very appealing as highly miniaturized micro-analytical devices for biosensing applications

    New trends In geomatics, in the era of low-cost sensors, free and open source software and HPC geoBigData infrastructures

    Get PDF
    Nowadays, the increasing availability of low-cost sensors, Free and Open Source Software and High Performance Computing infrastructures allows Geomatics to widen its application scope, by stimulating new challenging investigations related to the modeling of the observations provided by these new tools. In this review, some methodologies and applications, developed at the Geodesy and Geomatics Division (DICEA) of University of Rome \u201cLa Sapienza\u201d, are shortly presented. Directly related to the mentioned software and hardware new availability, they are already ready for industrial applications and hopefully can broaden the interaction between Geomatics and other scientific and technological disciplines

    Amorphous silicon photosensors integrated in microfluidic structures as a technological demonstrator of a "true" Lab-on-Chip system

    Get PDF
    In this paper we present a compact technological demonstrator including on the same glass substrate an electrowetting-on-dielectrics (EWOD) system, a linear array of amorphous silicon photosensor and a capillary-driven microfluidic channel. The proposed system comprises also a compact modular electronics controlling the digital microfluidics through the USB interface of a computer. The system provides therefore both on-chip detection and microfluidic handling needed for the realization of a 'true' Lab-on-Chip. The geometry of the photosensors has been designed to maximize the radiation impinging on the photosensor and to minimize the inter-site crosstalk, while the fabrication process has been optimized taking into account the compatibility of all the technological steps for the fabrication of the EWOD system, the photosensor array and the microfluidics channels. As a proof of the successful integration of the different technological steps we demonstrated the ability of the a-Si:H photosensors to detect the presence of a droplet over an EWOD electrode and the effective coupling between the digital and the continuous microfluidics, that can allow for functionalization, immobilization and recognition of biomolecules without external optical devices or microfluidic interconnections

    An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay

    Get PDF
    A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the successful on-chip detection of hydrogen peroxide down to 18 mu M by using luminol and 4-iodophenol as enhancer agent

    Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes

    Get PDF
    This work presents a lab-on-chip system, which combines a glass-polydimethilsiloxane microfluidic network and an array of amorphous silicon photosensors for the diagnosis and follow-up of Celiac disease. The microfluidic chip implements an on-chip enzyme-linked immunosorbent assay (ELISA), relying on a sandwich immunoassay between antibodies against gliadin peptides (GPs) and a secondary antibody marked with horseradish peroxidase (Ig-HRP). This enzyme catalyzes a chemiluminescent reaction, whose light intensity is detected by the amorphous silicon photosensors and transduced into an electrical signal that can be processed to recognize the presence of antibodies against GPs in the serum of people affected by Celiac syndrome.The correct operation of the developed lab-on-chip has been demonstrated using rabbit serum in the microfluidic ELISA. In particular, optimizing the dilution factors of both sera and Ig-HRP samples in the flowing solutions, the specific and non-specific antibodies against GPs can be successfully distinguished, showing the suitability of the presented device to effectively screen celiac disease epitopes. Keywords: Lab-on-chip, Celiac disease, Microfluidics, On-chip detection, ELISA, Amorphous silicon photosensor

    Analysis of lead oxide (PbO) layers for direct conversion X-ray detection

    Get PDF
    Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm × 20 cm are presented. The detector has 960 × 1080 pixels with a pixel pitch of 184 ?m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented

    Biomolecular monitoring tool based on lab-on-chip for virus detection

    Get PDF
    Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications
    • …
    corecore