656 research outputs found
Ozone observations and a model of marine boundary layer photochemistry during SAGA 3
A major purpose of the third joint Soviet‐American Gases and Aerosols (SAGA 3) oceanographic cruise was to examine remote tropical marine O3 and photochemical cycles in detail. On leg 1, which took place between Hilo, Hawaii, and Pago‐Pago, American Samoa, in February and March 1990, shipboard measurements were made of O3, CO, CH4, nonmethane hydrocarbons (NMHC), NO, dimethyl sulfide (DMS), H2S, H2O2, organic peroxides, and total column O3. Postcruise analysis was performed for alkyl nitrates and a second set of nonmethane hydrocarbons. A latitudinal gradient in O3 was observed on SAGA 3, with O3 north of the intertropical convergence zone (ITCZ) at 15–20 parts per billion by volume (ppbv) and less than 12 ppbv south of the ITCZ but never ≤3 ppbv as observed on some previous equatorial Pacific cruises (Piotrowicz et al., 1986; Johnson et al., 1990). Total column O3 (230–250 Dobson units (DU)) measured from the Akademik Korolev was within 8% of the corresponding total ozone mapping spectrometer (TOMS) satellite observations and confirmed the equatorial Pacific as a low O3 region. In terms of number of constituents measured, SAGA 3 may be the most photochemically complete at‐sea experiment to date. A one‐dimensional photochemical model gives a self‐consistent picture of O3‐NO‐CO‐hydrocarbon interactions taking place during SAGA 3. At typical equatorial conditions, mean O3 is 10 ppbv with a 10–15% diurnal variation and maximum near sunrise. Measurements of O3, CO, CH4, NMHC, and H2O constrain model‐calculated OH to 9 × 105 cm−3 for 10 ppbv O3 at the equator. For DMS (300–400 parts per trillion by volume (pptv)) this OH abundance requires a sea‐to‐air flux of 6–8 × 109 cm−2 s−1, which is within the uncertainty range of the flux deduced from SAGA 3 measurements of DMS in seawater (Bates et al., this issue). The concentrations of alkyl nitrates on SAGA 3 (5–15 pptv total alkyl nitrates) were up to 6 times higher than expected from currently accepted kinetics, suggesting a largely continental source for these species. However, maxima in isopropyl nitrate and bromoform near the equator (Atlas et al., this issue) as well as for nitric oxide (Torres and Thompson, this issue) may signify photochemical and biological sources of these species
NGC 1333 IRAS 4B Spectrum
Basic knowledge in astronomyThis spectrum shows evidences of water vapor in the core of the embryonic star NGC 1333-IRAS 4BComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Astronomi
Active Galactic Nucleus in Galaxy NGC 3621
Basic knowledge in astronomyThis graphic shows a core asset in the galaxy NGC 3621, possibly a black holeComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Astronomi
North America Nebula Comparison
This image shows the North America nebula seen by visible light and infraredEducação Superior::Ciências Exatas e da Terra::Astronomi
NGC 1333 IRAS 4B Spectrum
Basic knowledge in astronomyThis spectrum shows evidences of water vapor in the core of the embryonic star NGC 1333-IRAS 4BComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Astronomi
Exoplanet WASP-12b
This image indicates the presence of molecules in the planet WASP-12b. Measurements suggest this planet's atmosphere has carbon monoxide, excess methane and not much water vaporEducação Superior::Ciências Exatas e da Terra::Astronomi
- …
