792 research outputs found

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Two charged strangeonium-like structures observable in the Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-} process

    Full text link
    Via the Initial Single Pion Emission (ISPE) mechanism, we study the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution of Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-}. Our calculation indicates there exist a sharp peak structure (Zs1+Z_{s1}^+) close to the KKˉK\bar{K}^\ast threshold and a broad structure (Zs2+Z_{s2}^+) near the KKˉK^\ast\bar{K}^\ast threshold. In addition, we also investigate the ϕ(1680)ϕ(1020)π+π\phi(1680) \to \phi(1020)\pi^{+} \pi^{-} process due to the ISPE mechanism, where a sharp peak around the KKˉK\bar{K}^\ast threshold appears in the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution. We suggest to carry out the search for these charged strangeonium-like structures in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.

    Investigation of quasi-periodic varaiations in hard X-rays of solar flares

    Full text link
    The aim of the present paper is to use quasi-periodic oscillations in hard X-rays (HXRs) of solar flares as a diagnostic tool for investigation of impulsive electron acceleration. We have selected a number of flares which showed quasi-periodic oscillations in hard X-rays and their loop-top sources could be easily recognized in HXR images. We have considered MHD standing waves to explain the observed HXR oscillations. We interpret these HXR oscillations as being due to oscillations of magnetic traps within cusp-like magnetic structures. This is confirmed by a good correlation between periods of the oscillations and the sizes of the loop-top sources. We argue that a model of oscillating magnetic traps is adequate to explain the observations. During the compressions of a trap particles are accelerated, but during its expansions plasma, coming from chromospheric evaporation, fills the trap, which explains the large number of electrons being accelerated during a sequence of strong impulses. The advantage of our model of oscillating magnetic traps is that it can explain both the impulses of electron acceleration and quasi-periodicity of their distribution in time.Comment: 21 pages, 11 figures, 3 tables, submitted to Solar Physic

    muSR in Ce_{1-x}La_xAl_3: anisotropic Kondo effect?

    Full text link
    Zero-field muSR experiments in the heavy-fermion alloys Ce_{1-x}La_xAl_3, x = 0 and 0.2, examine a recent proposal that the system exhibits a strong anisotropic Kondo effect. We resolve a damped oscillatory component for both La concentrations, indicative of disordered antiferromagnetism. For x = 0.2 the oscillation frequency decreases smoothly with increasing temperature, and vanishes at the specific heat anomaly temperature T* \approx 2.2 K. Our results are consistent with the view that T* is due to a magnetic transition rather than anisotropic Kondo behavior.Comment: 5 pages, 2 figures. To be published in proceedings of musr2002 (Physica B

    Imaging Sources with Fast and Slow Emission Components

    Full text link
    We investigate two-proton correlation functions for reactions in which fast dynamical and slow evaporative proton emission are both present. In such cases, the width of the correlation peak provides the most reliable information about the source size of the fast dynamical component. The maximum of the correlation function is sensitive to the relative yields from the slow and fast emission components. Numerically inverting the correlation function allows one to accurately disentangle fast dynamical from slow evaporative emission and extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure

    Bounds on the dipole moments of the tau-neutrino via the process e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma in a 331 model

    Full text link
    We obtain limits on the anomalous magnetic and electric dipole moments of the ντ\nu_{\tau} through the reaction e+eννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma and in the framework of a 331 model. We consider initial-state radiation, and neglect WW and photon exchange diagrams. The results are based on the data reported by the L3 Collaboration at LEP, and compare favorably with the limits obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C. arXiv admin note: substantial text overlap with arXiv:hep-ph/060527

    Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with S4S_4 Flavor Symmetry

    Full text link
    We study the renormalization group running of the tri-bimaximal mixing predicted by the two typical S4S_4 flavor models at leading order. Although the textures of the mass matrices are completely different, the evolution of neutrino mass and mixing parameters is found to display approximately the same pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum corrections to both atmospheric and reactor neutrino mixing angles are so small that they can be neglected. The evolution of the solar mixing angle θ12\theta_{12} depends on tanβ\tan\beta and neutrino mass spectrum, the deviation from its tri-bimaximal value could be large. Taking into account the renormalization group running effect, the neutrino spectrum is constrained by experimental data on θ12\theta_{12} in addition to the self-consistency conditions of the models, and the inverted hierarchy spectrum is disfavored for large tanβ\tan\beta. The evolution of light-neutrino masses is approximately described by a common scaling factor.Comment: 23 pages, 6figure

    In-plane fluxon in layered superconductors with arbitrary number of layers

    Full text link
    I derive an approximate analytic solution for the in-plane vortex (fluxon) in layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary number of layers. The validity of the solution is verified by numerical simulation. It is shown that in SJJ's with large number of thin layers, phase/current and magnetic field of the fluxon are decoupled from each other. The variation of phase/current is confined within the Josephson penetration depth, λJ\lambda_J, along the layers, while magnetic field decays at the effective London penetration depth, λcλJ\lambda_c \gg \lambda_J. For comparison with real high-TcT_c superconducting samples, large scale numerical simulations with up to 600 SJJ's and with in-plane length up to 4000 λJ\lambda_J%, are presented. It is shown, that the most striking feature of the fluxon is a Josephson core, manifesting itself as a sharp peak in magnetic induction at the fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference on Vortex Matter in Superconductors (Crete, September 1999

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    Analysis of the radiative decays among the charmonium states

    Full text link
    In this article, we study the radiative decays among the charmonium states with the heavy quark effective theory, and make predictions for the ratios among the radiative decay widths of an special multiplet to another multiplet. The predictions can be confronted with the experimental data in the future and put additional constraints in identifying the XX, YY, ZZ charmonium-like mesons.Comment: 12 pages, revised revisio
    corecore