815 research outputs found
Reconfiguring Independent Sets in Claw-Free Graphs
We present a polynomial-time algorithm that, given two independent sets in a
claw-free graph , decides whether one can be transformed into the other by a
sequence of elementary steps. Each elementary step is to remove a vertex
from the current independent set and to add a new vertex (not in )
such that the result is again an independent set. We also consider the more
restricted model where and have to be adjacent
Two charged strangeonium-like structures observable in the process
Via the Initial Single Pion Emission (ISPE) mechanism, we study the
invariant mass spectrum distribution of . Our calculation indicates there exist a sharp peak
structure () close to the threshold and a broad
structure () near the threshold. In addition, we
also investigate the process due to
the ISPE mechanism, where a sharp peak around the threshold
appears in the invariant mass spectrum distribution. We
suggest to carry out the search for these charged strangeonium-like structures
in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.
Investigation of quasi-periodic varaiations in hard X-rays of solar flares
The aim of the present paper is to use quasi-periodic oscillations in hard
X-rays (HXRs) of solar flares as a diagnostic tool for investigation of
impulsive electron acceleration. We have selected a number of flares which
showed quasi-periodic oscillations in hard X-rays and their loop-top sources
could be easily recognized in HXR images. We have considered MHD standing waves
to explain the observed HXR oscillations. We interpret these HXR oscillations
as being due to oscillations of magnetic traps within cusp-like magnetic
structures. This is confirmed by a good correlation between periods of the
oscillations and the sizes of the loop-top sources. We argue that a model of
oscillating magnetic traps is adequate to explain the observations. During the
compressions of a trap particles are accelerated, but during its expansions
plasma, coming from chromospheric evaporation, fills the trap, which explains
the large number of electrons being accelerated during a sequence of strong
impulses. The advantage of our model of oscillating magnetic traps is that it
can explain both the impulses of electron acceleration and quasi-periodicity of
their distribution in time.Comment: 21 pages, 11 figures, 3 tables, submitted to Solar Physic
muSR in Ce_{1-x}La_xAl_3: anisotropic Kondo effect?
Zero-field muSR experiments in the heavy-fermion alloys Ce_{1-x}La_xAl_3, x =
0 and 0.2, examine a recent proposal that the system exhibits a strong
anisotropic Kondo effect. We resolve a damped oscillatory component for both La
concentrations, indicative of disordered antiferromagnetism. For x = 0.2 the
oscillation frequency decreases smoothly with increasing temperature, and
vanishes at the specific heat anomaly temperature T* \approx 2.2 K. Our results
are consistent with the view that T* is due to a magnetic transition rather
than anisotropic Kondo behavior.Comment: 5 pages, 2 figures. To be published in proceedings of musr2002
(Physica B
Imaging Sources with Fast and Slow Emission Components
We investigate two-proton correlation functions for reactions in which fast
dynamical and slow evaporative proton emission are both present. In such cases,
the width of the correlation peak provides the most reliable information about
the source size of the fast dynamical component. The maximum of the correlation
function is sensitive to the relative yields from the slow and fast emission
components. Numerically inverting the correlation function allows one to
accurately disentangle fast dynamical from slow evaporative emission and
extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure
Bounds on the dipole moments of the tau-neutrino via the process in a 331 model
We obtain limits on the anomalous magnetic and electric dipole moments of the
through the reaction
and in the framework of a 331 model. We consider initial-state radiation, and
neglect and photon exchange diagrams. The results are based on the data
reported by the L3 Collaboration at LEP, and compare favorably with the limits
obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C.
arXiv admin note: substantial text overlap with arXiv:hep-ph/060527
Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with Flavor Symmetry
We study the renormalization group running of the tri-bimaximal mixing
predicted by the two typical flavor models at leading order. Although the
textures of the mass matrices are completely different, the evolution of
neutrino mass and mixing parameters is found to display approximately the same
pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum
corrections to both atmospheric and reactor neutrino mixing angles are so small
that they can be neglected. The evolution of the solar mixing angle
depends on and neutrino mass spectrum, the deviation
from its tri-bimaximal value could be large. Taking into account the
renormalization group running effect, the neutrino spectrum is constrained by
experimental data on in addition to the self-consistency
conditions of the models, and the inverted hierarchy spectrum is disfavored for
large . The evolution of light-neutrino masses is approximately
described by a common scaling factor.Comment: 23 pages, 6figure
In-plane fluxon in layered superconductors with arbitrary number of layers
I derive an approximate analytic solution for the in-plane vortex (fluxon) in
layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary
number of layers. The validity of the solution is verified by numerical
simulation. It is shown that in SJJ's with large number of thin layers,
phase/current and magnetic field of the fluxon are decoupled from each other.
The variation of phase/current is confined within the Josephson penetration
depth, , along the layers, while magnetic field decays at the
effective London penetration depth, . For comparison
with real high- superconducting samples, large scale numerical simulations
with up to 600 SJJ's and with in-plane length up to 4000 %, are
presented. It is shown, that the most striking feature of the fluxon is a
Josephson core, manifesting itself as a sharp peak in magnetic induction at the
fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference
on Vortex Matter in Superconductors (Crete, September 1999
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
Analysis of the radiative decays among the charmonium states
In this article, we study the radiative decays among the charmonium states
with the heavy quark effective theory, and make predictions for the ratios
among the radiative decay widths of an special multiplet to another multiplet.
The predictions can be confronted with the experimental data in the future and
put additional constraints in identifying the , , charmonium-like
mesons.Comment: 12 pages, revised revisio
- …