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Abstract. We present a polynomial-time algorithm that, given two in-
dependent sets in a claw-free graph G, decides whether one can be trans-
formed into the other by a sequence of elementary steps. Each elementary
step is to remove a vertex v from the current independent set S and to
add a new vertex w (not in S) such that the result is again an indepen-
dent set. We also consider the more restricted model where v and w have
to be adjacent.

1 Introduction

Reconfiguration Problems. To obtain a reconfiguration version of an algorith-
mic problem, one defines a reconfiguration rule — a (symmetric) adjacency relation
between solutions of the problem, describing small transformations one is allowed
to make. The main focus is on studying whether one given solution can be trans-
formed into another by a sequence of such small steps. We call this a reachabil-
ity problem. For example, in a well-studied reconfiguration version of vertex color-
ing[1,2,3,4,5,6], we are given two k-colorings of the vertices of a graph and we should
decide whether one can be transformed into the other by recoloring one vertex at
a time so that all intermediate solutions are also proper k-colorings.

A useful way to look at reconfiguration problems is through the concept of
the solution graph. Given a problem instance, the vertices of the solution graph
are all solutions to the instance, and the reconfiguration rule defines its edges.
Clearly, one solution can be transformed into another if they belong to the
same connected component of the solution graph. Other well-studied questions
in the context of reconfiguration are as follows: can one efficiently decide (for
every instance) whether the solution graph is connected? Can one efficiently
find shortest paths between two solutions? Common non-algorithmic results are
giving upper and lower bounds on the possible diameter of components of the
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solution graph, in terms of the instance size, or studying how much the solution
space needs to be increased in order to guarantee connectivity.

Reconfiguration is a natural setting for real-life problems in which solutions
evolve over time and an interesting theoretical framework that has been grad-
ually attracting more attention. The theoretical interest is based on the fact
that reconfiguration problems provide a new perspective and offer a deeper un-
derstanding of the solution space as well as a potential to develop heuristics to
navigate that space.

The reconfiguration paradigm has recently been applied to a number of al-
gorithmic problems: vertex coloring [1,2,3,4,5], list-edge coloring [7], clique, set
cover, integer programming, matching, spanning tree, matroid bases [8], block
puzzles [9], satisfiability [10], independent set [9,8,11], shortest paths [12,13,14],
and dominating set [15]; recently also in the setting of parameterized complexity
[16]. A recent survey [17] gives a good introduction to this area of research.

Reconfiguration of Independent Sets. The topic of this paper is reconfig-
uration of independent sets. An independent set in a graph is a set of pairwise
nonadjacent vertices. We will view the elements of an independent set as tokens
placed on vertices. Three different reconfiguration rules have been studied in the
literature: token sliding (TS), token jumping (TJ), and token addition/removal
(TAR). The reconfiguration rule in the TS model allows to slide a token along
an edge. The reconfiguration rule in the TJ model allows to remove a token
from a vertex and place it on another unoccupied vertex. In the TAR model, the
reconfiguration rule allows to either add or remove a token as long as at least k
tokens remain on the graph at any point, for a given integer k. In all three cases,
the reconfiguration rule may of course only be applied if it maintains an inde-
pendent set. A sequence of moves following these rules is called a TS-sequence,
TJ-sequence, or k-TAR-sequence, respectively. Note that the TS model is more
restricted than the TJ model, in the sense that any TS-sequence is also a TJ-
sequence. Kaminski et al. [11] showed that the TAR model generalizes the TJ
model, in the sense that there exists a TJ-sequence between two solutions I and
J with |I| = |J| if and only if there exists a k-TAR-sequence between them, with
k = |I| — 1. TS seems to have been introduced by Hearn and Demaine [9], TAR
was introduced by Ito et al. [8] and TJ by Kaminiski et al. [11].

In all three models, the corresponding reachability problems are PSPACE-
complete in general graphs [8] and even in perfect graphs [11] or in planar graphs
of maximum degree 3 [9] (see also [3]). We remark that in [9], only the TS-model
was explicitly considered, but since only maximum independent sets are used,
this implies the result for the TJ model (see Proposition 2 below) and for the
TAR model (using the aforementioned result from [11]).

Claw-Free Graphs. A claw is the tree with four vertices and three leaves.
A graph is claw-free if it does not contain a claw as an induced subgraph. A
claw is not a line graph of any graph and thus the class of claw-free graphs
generalizes the class of line graphs. The structure of claw-free graphs is not
simple but has been recently described by Chudnovsky and Seymour in the
form of a decomposition theorem [18].
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There is a natural one-to-one correspondence between matchings in a graph
and independent sets in its line graph. In particular, a maximum matching in
a graph corresponds to a maximum independent set in its line graph. Hence,
Edmonds’ maximum matching algorithm [19] gives a polynomial-time algorithm
for finding maximum independent sets in line graphs. This results has been
extended to claw-free graphs independently by Minty [20] and Sbihi [21]. Both
algorithms work for the unweighted case, while the algorithm of Minty, with a
correction proposed by Nakamura and Tamura in [22], applies to weighted graphs
(see also [23, Section 69]). Recently Nobili and Sassano [24] improved this to
give an O(n*logn) algorithm, while Faenza et al. [25] proved a decomposition
theorem that allows to solve the problem in O(n?) time.

Our Results. In this paper, we study the reachability problem for independent
set reconfiguration, using the TS and TJ model. Our main result is that these
problems can be solved in polynomial time for the case of claw-free graphs.
Along the way, we prove some results that are interesting in their own right.
For instance, we show that for connected claw-free graphs, the existence of a
TJ-sequence implies the existence of a TS-sequence between the same pair of
solutions. This implies that for connected claw-free and even-hole-free graphs,
the solution graph is always connected, answering an open question posed in [11].

Since claw-free graphs generalize line graphs, our results generalize the result
by Ito et al. [8] on matching reconfiguration. Since a vertex set I of a graph G
is an independent set if and only if V(G)\I is a vertex cover, our results also
apply to the recently studied vertex cover reconfiguration problem [16]. The new
techniques we introduce can be seen as an extension of the techniques introduced
for finding maximum independent sets in claw-free graphs, and we expect them
to be useful for addressing similar reconfiguration questions, such as efficiently
deciding whether the solution graph is connected.

Because of space constraints, some proof details are omitted. Statements for
which more proof details can be found in the full version of this paper [26] are
marked with a star.

2 Preliminaries

For graph theoretic terminology not defined here, we refer to [27]. For a graph
G and vertex set S C V(G), we denote the subgraph induced by S by G[S], and
denote G — S = G[V\S]. The set of neighbors of a vertex v € V(G) is denoted
by N (v), and the closed neighborhood of v is N[v] = N(v)U{v}. A walk from vy
to vi of length k is a sequence of vertices vo, v1, ..., v such that v;v,11 € E(G)
for all i € {0,...,k—1}. It is a path if all of its vertices are distinct, and a cycle
if k>3, v9 = v and vy, ...,v_1 is a path. We use V(C) to denote the vertex
set of a path or cycle, viewed as a subgraph of G. A path or graph is called
trivial if it contains only one vertex. Edges of a directed graph or digraph D are
called arcs, and are denoted by the ordered tuple (u,v). A directed path in D
is a sequence of distinct vertices vy, ..., v such that for all ¢ € {0,...,k — 1},
(vi,vi+1) is an arc of D.
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We denote the distance of two vertices u,v € V(G) by dg(u,v). By diam(G)
we denote the diameter of a connected graph G, defined as max, ,cv(¢) da(u, v).
For a vertex set S of a graph G and integer i € N, we denote N;(S) = {v €
V(G)\S : [N(v) N S| =i}

For a graph G, by TS;(G) we denote the graph that has as its vertex the set
of all independent sets of G of size k, where two independent sets I and J are
adjacent if there is an edge uv € E(G) with I\J = {u} and J\I = {v}. We say
that J can be obtained from I by sliding a token from w to v, or by the move
u — v for short. A walk in TS;(G) from I to J is called a TS-sequence from I
to J. We write I <»7g J to indicate that there is a TS-sequence from I to J.

Analogously, by TJ(G) we denote the graph that has as its vertex set the set
of all independent sets of G of size k, where two independent sets I and J are
adjacent if there is a vertex pair u,v € V(G) with I\J = {u} and J\I = {v}.
We say that J can be obtained from I by jumping a token from u to v. A walk
in TSk(G) from I to J is called a TJ-sequence from I to J. We write I <>13 J
to indicate that there exists a TJ-sequence from I to J. Note that TS;(G) is a
spanning subgraph of TJ(G).

The reachability problem for token sliding (resp. token jumping) has as input
a graph G and two independent sets I and J of G with |I| = |J|, and asks
whether I <»1g J (resp. I <>y J). These problems are called T'S-Reachability
and TJ-Reachability, respectively.

If H is a claw with vertex set {u,v,w,z} such that N(u) = {v,w,z}, then H
is called a u-claw with leaves v, w, x. Sets I\{v} and TU{v} are denoted by I —v
and I 4 v respectively. The symmetric difference of two sets I and J is denoted
by IAJ = (I\J) U (J\I). The following observation is used implicitly in many
proofs:

Proposition 1. Let I and J be independent sets in a claw-free graph G. Then
every component of G[IAJ] is a path or an even length cycle.

By a(G) we denote the size of the largest independent set of G. An inde-
pendent set I is called mazimum if |I| = a(G). A vertex set S C V(G) is a
dominating set if N[v] NS # () for all v € V(G). Observe that a maximum inde-
pendent set is a dominating set, thus the only possible token jumps from it are
between adjacent vertices, and hence all are token slides:

Proposition 2. Let G be any graph and k = «(G). Then, T'Si(G) = TJx(G).
In particular, for any two mazimum independent sets I and J in G, I <> J if
and only if I <7y J.

3 The Equivalence of Sliding and Jumping

In our main result (Theorem 17), we will consider equal size independent sets
I and J of a claw-free graph G, and show that in polynomial time, it can be
verified whether I <+»pg J and whether I <>y J. In this section, we show
that if G is connected and G[I AJ] contains no cycles, then I <>7g J. From this,
we will subsequently conclude that for connected claw-free graphs I <»7g J holds
if and only if I <>y J holds, even in the case of nonmaximum independent sets.
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Lemma 3 (*). Let I and J be independent sets in a connected claw-free graph
G with |I| = |J|. If GIIAJ] contains no cycles, then I <>g J.

Proof sketch: We show that I or J can be modified using token slides so that the
two resulting independent sets are closer to each other in the sense that either
[T\ J| is smaller, or it is unchanged and the minimum distance between vertices
u,v with w € I'\ J and v € J\ I is smaller. The claim then follows by induction.

Suppose first that G[IAJ] contains at least one nontrivial component C'. Since
it is not a cycle by assumption, it must be a path. Choose an end vertex u of this
path, and let v be its unique neighbor on the path. If u € J then N(u)NI = {v},
so we can obtain a new independent set I’ = I + u — v from I using a single
token slide. The new set I’ is closer to J in the sense that [I'\J| < [I\J|, so we
may use induction to conclude that I’ <31g J, and thus I <+1g J. On the other
hand, if v € I then we can obtain a new independent set J' = J — v + u from
J, and conclude the proof similarly by applying the induction assumption to J'
and 1.

In the remaining case, we may assume that G[I AJ] consists only of isolated
vertices. Choose u € I\J and v € J\I, such that the distance d := dg(u,v)
between these vertices is minimized. Starting with I, we intend to slide the
token on u to v, to obtain an independent set I’ = I — u + v that is closer to J.
To this end, we choose a shortest path P = vg, ..., vq in G from vy = u to vg = v.
If the token can be moved along this path while maintaining an independent set
throughout, then I <»1g I’, and the proof follows by induction as before.

So now suppose that this cannot be done, that is, at least one of the vertices
on P is equal to or adjacent to a vertex in I — u. In that case, we choose ¢
maximum such that N(v;) NI # (. Using some simple observations (including
the fact that G is claw-free), one can now show that N (v;) NI consists of a single
vertex x. By choice of v;, starting with I, the token on x can be moved along the
path x,v;,v;11,...,vs while maintaining an independent set throughout. This
yields an independent set I = I — x + v, with I <>pg I"”. It can also easily
be shown that dg(u,z) < dg(u,v) and dg(z,v) < dg(u,v). So considering the
choice of w and v, it follows that € I N J, and thus [I"\J| = |I\J|. Since now
the pair u € I\ J and « € J\I" has a smaller distance dg(u,z) < dg(u,v) =d,
we may assume by induction that I"” <+7g J, and thus I <+7g J. O

Corollary 4. Let I and J be independent sets in a connected claw-free graph
G. Then I <7s J if and only if I <13 J.

Proof: Let J be obtained from I by jumping a token from u to v. Then G[IAJ]
contains only two vertices and therefore no cycles. So by Lemma 3, any token
jump can be replaced by a sequence of token slides. O

We now consider implications of the above corollary for graphs that are claw-
and even-hole-free. A graph is even-hole-free if it contains no even cycle as an
induced subgraph. Kaminski et al. [11] proved the following statement.

Theorem 5 ([11]). Let I and J be two independent sets of a graph G with
[I| = |J|. If GIIAJ] contains no even cycles, then there exists a TJ-sequence
from I to J of length |I\J|, which can be constructed in linear time.
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In particular, if G is even-hole-free, then TJj(G) is connected (for every k). How-
ever, T'S;(G) is not necessarily connected (consider a claw with two tokens). This
motivated the question asked in [11] whether for connected, claw-free and even-
hole-free graph G, TSy (G) is connected. Combining Corollary 4 with Theorem 5
shows that the answer to this question is affirmative.

Corollary 6. Let G be a connected claw-free and even-hole-free graph. Then
TSk (G) is connected.

4 Nonmaximum Independent Sets

We now continue studying connected claw-free graphs. By Lemma 3 it remains
to consider the case that G[IAJ] contains (even length) cycles. In this section,
we show that if I and J are not maximum independent sets of G, such cycles
can always be resolved. This requires various techniques developed for finding
maximum independent sets in claw-free graphs, and the following definitions.
A vertex v € V(G) is free (with respect to an independent set I of G) if v ¢ I
and [N(v)NI| < 1. Let W = vg,...,v; be a walk in G, and let I C V(G).
Then W is called I-alternating if |{vi,viy1} NI| =1fori=0,...,k— 1. In the
case that W is a path, W is called chordless if G[{vo,...,v;}] is a path. In the
case that W is a cycle (so vg = vg), W is called chordless if G[{vo,...,vg-1}]
is a cycle. A cycle W = wg,...,v; is called I-bad if it is [-alternating and
chordless. A path W = vg,...,vx with k > 2 is called I-augmenting if it is I-
alternating and chordless, and vy and v are both free vertices. This definition of
I-augmenting paths differs from the usual definition, as it is used in the setting of
finding mazimum independent sets, since the chordless condition is stronger than
needed in such a setting. However, we observe that in a claw-free graph G, the
two definitions are equivalent, so we may apply well-known statements about
I-augmenting paths proved elsewhere. In particular, we use the following two
results originally proved by Minty [20] and Sbihi [21] (see also [23, Section 69.2]).

Theorem 7 ([23]). Let I be an independent set in a claw-free graph G. In
polynomial time, it can be decided whether an I-augmenting path between two
given free vertices x and y exists, and if so, one can be computed.

Proposition 8 ([23]). Let I be a nonmazimum independent set in a claw-free
graph G. Then I is not a dominating set, or there exists an I-augmenting path.

We use Proposition 8 to handle the case of nonmaximum independent sets.
The next statement is formulated for token jumping, and (by Corollary 4) implies
the same result for token sliding, in the case of connected graphs.

Lemma 9 (*). Let I be a nonmazimum independent set in a claw-free graph
G. Then for any independent set J with |J| = |I|, I <313 J holds.

Proof sketch: By Theorem 5, it suffices to consider the case where G[IAJ] con-
tains at least one cycle C. Let C = uq,vy,us,vs,...,Vk, u1, so that u; € I and
v; € J for all 4.
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Suppose first that I is not a dominating set. Then we can choose a vertex w
with N|w] N T = (. With a single token jump, we can obtain the independent
set I' = I +w — uy from I. Next, apply the moves uy — v, Uk_1 — Vg_1,.. .,
ug — ve, in this order. (This is possible since C' is chordless.) Finally, jump the
token from w to v1. It can be verified that this yields a token jumping sequence
from I to I' = IAV(C). This way, all cycles can be resolved one by one, until
no more cycles remain and Theorem 5 can be applied to prove the statement.

On the other hand, if I is a dominating set, then Proposition 8 shows that
there exists an I-augmenting path P = vg,u1,v1,...,uq,vq, with u; € I for
all 7. Since vq is a free vertex, we can first apply the moves ug — vg, ug_1 —
Vd—1,. .. U1 — v1, in this order (which can be done since P is chordless), to obtain
an independent set I’ from I, with I <»1g I’. Then vg is not dominated by I’,
so the previous argument shows that I’ <>y J, which implies I <>y J. |

5 Resolving Cycles

It now remains to study the case where G[IAJ] contains (even) cycles and
both I and J are maximum independent sets. In this case, there may not be
a TS-sequence from I to J (even though we assume that G is connected and
claw-free) — consider for instance the case where G itself is an even cycle. In this
section, we characterize the case where I <»1g J holds, by showing that this
is equivalent with every cycle being resolvable in a certain sense (Theorem 11
below). Subsequently, we show that resolvable cycles fall into two cases: internally
or externally resolvable cycles, which are characterized next. We first define the
notion of resolving a cycle.

Cycles in G[IAJ] are clearly both I-bad and J-bad. The I-bipartition of an
I-bad cycle is the ordered tuple [V(C) N1,V (C)\I]. We say that an I-bad cycle
C with I-bipartition [A, B] is resolvable (with respect to I) if there exists an
independent set I’ such that I <»1g I’ and G[I’ U B] contains no cycles. A
corresponding TS-sequence from I to I’ is called a resolving sequence and is said
to resolve C. By combining such a resolving sequence with a sequence of moves
similar to the previous proof, and then reversing the moves in the sequence
from I’ to I, except for moves of tokens on the cycle, one can show that every
resolvable cycle can be ‘turned’:

Lemma 10 (*). Let I be an independent set in a claw-free graph G and let C
be an I-bad cycle. If C is resolvable with respect to I, then I <»pg IAV(C).

We can now prove the following useful characterization: I <»7g J if and only
if every cycle in G[I AJ] is resolvable. By symmetry, it does not matter whether
one considers resolvability with respect to I or to J.

Theorem 11. Let I and J be independent sets in a claw-free connected graph
G. Then I <»7g J if and only if every cycle in G[IAJ] is resolvable with respect
toI.
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Proof: Consider an I-bad cycle C in G[I AJ] with I-bipartition [A, B], and a TS-
sequence from I to J. Since No(B) eventually contains no tokens, this sequence
must contain a move u — v with u € Na(B) and v € No(B). The first such move
can be shown to resolve the cycle.

The other direction is proved by induction on the number k& of cycles in
G[IAJ]. If k = 0, then by Lemma 3, I <»pg J. If k& > 1, then consider an
I-bad cycle C in G[IAJ]. Let I' = IAV(C). By Lemma 10, I <>1g I’. The
graph G[I' AJ] has one cycle fewer than G[I AJ]. Every cycle in G[I' AJ] remains
resolvable with respect to I’ (one can first consider a TS-sequence from I’ to I,
and subsequently a T'S-sequence from I that resolves the cycle). So by induction,
I’ <>7g J, and therefore, I <>7g J. O

Finally, we show that if an I-bad cycle C' can be resolved, it can be resolved
in at least one of two very specific ways. Let [A, B] be the I-bipartition of C. A
move u — v is called internal if {u,v} C No(B) and external if {u,v} C No(B).
A resolving sequence Iy, ..., I, for C is called internal (or external) if every
move except the last is an internal (respectively, external) move. (Obviously, to
resolve the cycle, the last move can neither be internal nor external, and can in
fact be shown to always be a move from Ny(B) to Ni(B).) The I-bad cycle C
is called internally resolvable resp. externally resolvable if such sequences exist.

Lemma 12 (*). Let I be an independent set in a claw-free graph G and let C
be an I-bad cycle. Then any shortest TS-sequence that resolves C' is an internal
or external resolving sequence.

Proof sketch: Let [A, B] be the I-bipartition of C'. Since G is claw-free, it follows
that there are no edges between vertices in No(B) and Ny(B). This can be
used to show that informally, any resolving sequence for C' remains a resolving
sequence after either omitting all noninternal moves or omitting all nonexternal
moves, while keeping the last move, which subsequently resolves the cycle. [

Theorem 11 and Lemma 12 show that to decide whether I <»7g J, it suffices to
check whether every cycle in G[IAJ] is externally or internally resolvable. Next
we give characterizations that allow polynomial-time algorithms for deciding
whether an I-bad cycle is internally or externally resolvable. For the external
case, we use the assumption that I is a maximum independent set to show that
in a shortest external resolving sequence I, ..., I, every token moves at most
once (that is, for every move u — v, both u € Iy and v € I, hold), so these
moves outline an augmenting path in a certain auxiliary graph.

Theorem 13 (*). Let I be a mazimum independent set in a claw-free graph
G and let C be an I-bad cycle with I-bipartition [A, B]. Then C is externally
resolvable if and only if there exists an (I\A)-augmenting path in G — A — B
between a pair of vertices © € No(B) and y € N1(B).

For a given I-bad cycle C with I-bipartition [A, B], there is a quadratic num-
ber of vertex pairs x € No(B) and y € N1(B) that need to be considered, and
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C2 C2

c3 c1 €3

C4 Co C4 Co

Co Ccr Ce Cr

Ce Ce

Fig.1. An example of a claw-free graph G with an internally resolvable cycle, along
with the corresponding auxiliary digraph D(G,C).

for every such a pair, testing whether there is an (I'\ A)-augmenting path be-
tween these in G — A — B can be done in polynomial time (Theorem 7). So from
Theorem 13 we conclude:

Corollary 14. Let I be a mazimum independent set in a claw-free graph G,
and let C be an I-bad cycle. In polynomial time, it can be decided whether C is
externally resolvable.

Next, we characterize internally resolvable cycles. Shortest internal resolving
sequences cannot be as easy to describe as external ones, since a token can move
several times (see Figure 1). Nevertheless, these sequences can be shown to have
a very specific structure, which can be characterized using paths in the following
auxiliary digraphs.

To define these digraphs, consider an I-bad cycle C = ¢y, c1,...,Can—-1,Co
in G, with ¢; € I for even ¢. Let [A, B] be the I-bipartition of C. For every
i €{0,...,n — 1}, define the corresponding layer as follows: L; = {v € V(G) |
N(v)NB = N(cg;) N B}. So when starting with I and using only internal moves,
it can be seen that the token that starts on co; will stay in the layer L;.

For such an I-bad cycle C of length at least 8, define D(G, C) to be a digraph
with vertex set V(G), with the following arc set. For every i € {0,...,n — 1}
and all pairs u € L;,v € L(j11) mod n With uwv ¢ E(G), add an arc (u,v). For
every i € {0,...,n — 1} and b € Ni(B) with N(b) N B = {¢(2i—1) mod 2n }, and
every v € L; with bv € E(G), add an arc (b,v). We denote the reversed cycle
by C"" = ¢g, can—1,- .-, 1, ¢o. This defines a similar digraph D(G,C"¢") (where
arcs between layers are reversed, and arcs from N7(B) go to different layers).
These graphs can be used to characterize whether C' is internally resolvable.

Theorem 15 (*). Let I be an independent set in a claw-free graph G. Let
C = ¢op,C1,...,Con—1,¢0 be an I-bad cycle (co € I) with I-bipartition [A, B],
of length at least 8. Then C is internally resolvable if and only if D(G,C) or
D(G,C7) contains a directed path from a vertex b € N1(B) with N(b)nI C A
to a vertex in A.
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Corollary 16. Let I be an independent set in a claw-free graph G on n vertices
and let C be an I-bad cycle. It can be decided in polynomial time whether C is
internally resolvable.

Proof: If C' has length at least 8, then Theorem 15 shows that it suffices to
make a polynomial number of depth-first-searches in D(G,C) and D(G, C™").
Otherwise, let [A4, B] be the I-bipartition of C. |A| < 3, so there are only O(n?)
independent sets I’ with |I’| = |I| and I\A C I’. So in polynomial time we can
generate the subgraph of TSy (G) induced by these sets, and search whether it
contains a path from I to an independent set I* with I\ A C I* where G[BUI*]
contains no cycle. C' is internally resolvable if and only if such a path exists. [

6 Summary of the Algorithm

We now summarize how the previous lemmas yield a polynomial time algorithm
for TS-Reachability and TJ-Reachability in claw-free graphs.

Theorem 17. Let I and J be independent sets in a claw-free graph G. We can
decide in polynomial time whether I <»1g J and whether I <>ty J.

Proof: Assume |I| = |J|; otherwise, we immediately return NO. We first consider
the case when G is connected. By Corollary 4, since G is connected, I <>1g J if
and only if I <>y J, thus we only need to consider the sliding model.

We test whether I and J are maximum independent sets of GG, which can
be done in polynomial time (by combining Proposition 8 and Theorem 7; see
also [20,21,23]). If not, then by Lemma 9, I <>y J holds, and thus I <>1g .J, so
we may return YES.

Now consider the case that both I and J are maximum independent sets.
Theorem 11 shows that I <»>g J if and only if every cycle in G[I AJ] is resolvable
with respect to I. By Lemma 12, it suffices to check for internal and external
resolvability of such cycles. This can be done in polynomial time by Corollary 14
(since I is a maximum independent set of G) and Corollary 16. We return YES
if and only if every cycle in C' was found to be internally or externally resolvable.

Now let us consider the case when G is disconnected. Clearly tokens cannot
slide between different connected components, so for deciding whether I <>1g J,
we can apply the argument above to every component, and return YES if and
only if the answer is YES for every component. If I is a not a maximum inde-
pendent set then Lemma 9 shows that I <»75 J always holds. If I is maximum,
then Proposition 2 shows that I <»j J holds if and only if I <>7g J. (I

7 Discussion

The results presented here have two further implications. Firstly, combined with
techniques from [28], it follows that I <7y J can be decided for any graph G
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that can be obtained from a collection of claw-free graphs using disjoint union
and complete join operations. See [28] for more details.

Secondly, a closer look at constructed reconfiguration sequences shows that

when G is claw-free, components of both TS (G) and TJ;(G) have diameter
bounded polynomially in [V(G)|. This is not surprising, since the same behavior
has been observed many times. To our knowledge, the only known examples
of polynomial time solvable reconfiguration problems that nevertheless require
exponentially long reconfiguration sequences are on artificial instance classes,
which are constructed particularly for this purpose (see e.g. [3,14]).
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