41 research outputs found

    Literacy Development through Early Childhood Development Program in India

    Get PDF

    Mobile monitoring along a street canyon and stationary forest air monitoring of formaldehyde by means of a micro gas analysis system

    Get PDF
    A micro-gas analysis system (μGAS) was developed for mobile monitoring and continuous measurements of atmospheric HCHO. HCHO gas was trapped into an absorbing/reaction solution continuously using a microchannel scrubber in which the microchannels were patterned in a honeycomb structure to form a wide absorbing area with a thin absorbing solution layer. Fluorescence was monitored after reaction of the collected HCHO with 2,4-pentanedione (PD) in the presence of acetic acid/ammonium acetate. The system was portable, battery-driven, highly sensitive (limit of detection = 0.01 ppbv) and had good time resolution (response time 50 s). The results revealed that the PD chemistry was subject to interference from O3. The mechanism of this interference was investigated and the problem was addressed by incorporating a wet denuder. Mobile monitoring was performed along traffic roads, and elevated HCHO levels in a street canyon were evident upon mapping of the obtained data. The system was also applied to stationary monitoring in a forest in which HCHO formed naturally via reaction of biogenic compounds with oxidants. Concentrations of a few ppbv-HCHO and several-tens of ppbv of O3 were then simultaneously monitored with the μGAS in forest air monitoring campaigns. The obtained 1 h average data were compared with those obtained by 1 h impinger collection and offsite GC-MS analysis after derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). From the obtained data in the forest, daily variations of chemical HCHO production and loss are discussed

    Galaxy clustering and projected density profiles as traced by satellites in photometric surveys: Methodology and luminosity dependence

    Full text link
    We develop a new method which measures the projected density distribution w_p(r_p)n of photometric galaxies surrounding a set of spectroscopically-identified galaxies, and simultaneously the projected correlation function w_p(r_p) between the two populations. In this method we are able to divide the photometric galaxies into subsamples in luminosity intervals when redshift information is unavailable, enabling us to measure w_p(r_p)n and w_p(r_p) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w_p(r_p) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption in the method that the foreground/background galaxies are randomly distributed and thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We applied our method to data from SDSS including a sample of 10^5 LRGs at z~0.4 and a sample of about half a million galaxies at z~0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w_p(r_p) at z~0.4 depends on luminosity in a manner similar to what is found at z~0.1, which are usually probed by autocorrelations of spectroscopic samples. On scales smaller than a few Mpc and at both z~0.4 and z~0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear support for the assumption commonly-adopted in HOD models that satellite galaxies of different luminosities are distributed in a similar way, following the dark matter distribution within their host halos.Comment: 38 pages, 12 figures, published in Ap

    FXYD3 functionally demarcates an ancestral breast cancer stem cell subpopulation with features of drug-tolerant persisters

    Get PDF
    乳がんの再発を起こす原因細胞を解明. 京都大学プレスリリース. 2023-11-16.The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain–containing ion transport regulator 3 (FXYD3), a component of the Na⁺/K⁺ pump. Accordingly, FXYD3⁺ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3⁺ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3⁺ CSCs were sensitive to senolytic Na⁺/K⁺ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3⁺ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na⁺/K⁺ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components
    corecore