11,456 research outputs found

    Bilinear Equations and B\"acklund Transformation for Generalized Ultradiscrete Soliton Solution

    Full text link
    Ultradiscrete soliton equations and B\"acklund transformation for a generalized soliton solution are presented. The equations include the ultradiscrete KdV equation or the ultradiscrete Toda equation in a special case. We also express the solution by the ultradiscrete permanent, which is defined by ultradiscretizing the signature-free determinant, that is, the permanent. Moreover, we discuss a relation between B\"acklund transformations for discrete and ultradiscrete KdV equations.Comment: 11 page

    ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445

    Get PDF
    We present Atacama Large Millimeter Array (ALMA) polarization observations at 97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot structure is dominated by two bright components enshrouded by diffuse emission. Both components show fractional polarization between 30 and 40 per cent, suggesting the presence of shocks. The polarized emission of the western component has a displacement of about 0.5 kpc outward with respect to the total intensity emission, and may trace the surface of a front shock. Strong polarization is observed in a thin strip marking the ridge of the hot spot structure visible from radio to optical. No significant polarization is detected in the diffuse emission between the main components, suggesting a highly disordered magnetic field likely produced by turbulence and instabilities in the downstream region that may be at the origin of the extended optical emission observed in this hot spot. The polarization properties support a scenario in which a combination of both multiple and intermittent shock fronts due to jet dithering, and spatially distributed stochastic second-order Fermi acceleration processes are present in the hot spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette

    Determination of nuclear parton distribution functions and their uncertainties at next-to-leading order

    Full text link
    Nuclear parton distribution functions (NPDFs) are determined by global analyses of experimental data on structure-function ratios F_2^A/F_2^{A'} and Drell-Yan cross-section ratios \sigma_{DY}^A/\sigma_{DY}^{A'}. The analyses are done in the leading order (LO) and next-to-leading order (NLO) of running coupling constant \alpha_s. Uncertainties of the NPDFs are estimated in both LO and NLO for finding possible NLO improvement. Valence-quark distributions are well determined, and antiquark distributions are also determined at x<0.1. However, the antiquark distributions have large uncertainties at x>0.2. Gluon modifications cannot be fixed at this stage. Although the advantage of the NLO analysis, in comparison with the LO one, is generally the sensitivity to the gluon distributions, gluon uncertainties are almost the same in the LO and NLO. It is because current scaling-violation data are not accurate enough to determine precise nuclear gluon distributions. Modifications of the PDFs in the deuteron are also discussed by including data on the proton-deuteron ratio F_2^D/F_2^p in the analysis. A code is provided for calculating the NPDFs and their uncertainties at given x and Q^2 in the LO and NLO.Comment: 15 pages, LaTeX, 22 eps files, to appear in PRC. A code for calculating our nuclear parton distribution functions and their uncertainties can be obtained from http://research.kek.jp/people/kumanos/nuclp.htm

    Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    Get PDF
    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and ion positions are performed for vacancy-solute complexes in Al-Cu, Al-Mg-Cu, and Al-Mg-Cu-Ag alloys. The ensuing simulated coincidence Doppler broadening spectra are compared with measured ones for defect identification. A linear fitting procedure, which uses the spectra for positrons trapped at vacancies in pure constituent metals as components, has previously been employed to find the relative percentages of different atomic species around the vacancy [A. Somoza et al. Phys. Rev. B 65, 094107 (2002)]. We test the reliability of the procedure by the help of first-principles results for vacancy-solute complexes and vacancies in constituent metals.Comment: Submitted to Physical Review B on September 19 2006. Revised version submitted on November 8 2006. Published on February 14 200

    ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    Get PDF
    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is \sim\,3939^{\circ}, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report a serendipitous detection of a sub-mJy source in the field of view, which is likely to be a submillimeter galaxy.Comment: 10 pages, 9 figures, Accepted for publication in the Ap

    Determination of fragmentation functions and their uncertainties from e+ + e- -> h + X data

    Get PDF
    Fragmentation functions are determined for pions, kaons, and nucleons by a global analysis of charged-hadron production data in electron-positron annihilation. The optimum functions are obtained in both leading order (LO) and next-to-leading order (NLO) of alpha_s. It is important that uncertainties of the fragmentation functions are estimated in this work by the Hessian method. We found that the uncertainties are large at small Q^2 and that they are generally reduced in the NLO in comparison with the LO ones. We supply a code for calculating the fragmentation functions and their uncertainties for the pions, kaons, and nucleons at given z and Q^2.Comment: 4 pages, LaTeX, 5 eps files, to be published in AIP proceedings of the 17th International Spin Physics Symposium (SPIN2006), Oct. 2-7, 2006, Kyoto, Japa

    Coherent photonuclear reactions for isotope transmutation

    Full text link
    Coherent photonuclear isotope transmutation (CPIT) produces exclusively radioactive isotopes (RIs) by coherent photonuclear reactions via E1 giant resonances. Photons to be used are medium energy photons produced by laser photons backscattered off GeV electrons. The cross sections are as large as 0.2 - 0.6 b, being independent of individual nuclides. A large fraction of photons is effectively used for the photonuclear reactions, while the scattered GeV electrons remain in the storage ring to be re-used. CPIT with medium energy photons provides specific/desired RIs with the high rate and the high density for nuclear science, molecular biology and for nuclear medicines.Comment: 8 pages, 2 figure

    Formation and decay of electron-hole droplets in diamond

    Full text link
    We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct-gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {\em et al.} [Phys. Rev. B {\bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.Comment: 7 pages, 8 figures, revised with some modifications in physics discussion, to be published in PR

    Modeling the momentum distributions of annihilating electron-positron pairs in solids

    Get PDF
    Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised manuscript submitted on November 14 200
    corecore