119 research outputs found

    Functional role of T-type calcium channels in tumour growth and progression: prospective in cancer therapy.

    Get PDF
    T-type Ca2+ channels represent a specific channel family overexpressed in different types of tumours. Their involvement in controlling the proliferation, angiogenesis and invasion of tumour cells, has been partially clarified. The article by Zhang et al. in this issue of BJP provides the first evidence of anti-tumoural effects of endostatin (ES) in U87 glioma cells. He demonstrated that ES or mibefradil (a L/T-type calcium channel blocker), reduces the proliferation and migration of U87 glioma cells in a T-type Ca2+ channel-dependent manner. However, the difference in the blocking effect of mibefradil on T-type calcium channel expression as compared with its ability to inhibit proliferation and migration, supports the idea of a broader T/L-type-independent effect of the mibefradil blocker. Overall, these findings provide new insights for the future development of a novel class of anti-T-type calcium channel blockers in the therapy of glioblastoma

    Differential splicing of three gonadotropin-releasing hormone transcripts in the ovary of seabream (Sparus aurata).

    Get PDF
    Previous studies demonstrated the presence of high-affinity GnRH binding sites and compounds with GnRH-like activity in the ovary of seabream, Sparus aurata, providing evidence for the role of GnRH as a paracrine/autocrine regulator of ovarian function in this species. In the present study, the expression of three forms of GnRH (salmon, chicken-II, and seabream) genes in this marine teleost species was demonstrated for the first time. Moreover, there is evidence for differential splicing and intronic expression of cGnRH-II and sbGnRH. Treatment of seabream follicle-enclosed oocytes with salmon GnRH stimulated reinitiation of oocyte meiosis, whereas chicken GnRH-II treatment was without effect. Novel information was also provided about organization of cGnRH-II and seabream GnRH transcripts, confirming that GnRH gene organization is maintained through evolution, despite changes in the size and sequence of exons and intron

    Cannabidiol stimulates AML-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner

    Get PDF
    Glioma stem-like cells (GSCs) correspond to a tumor cell subpopulation, involved in glioblastoma multiforme (GBM) tumor ini- tiation and acquired chemoresistance. Currently, drug-induced differentiation is considered as a promising approach to eradi- cate this tumor-driving cell population. Recently, the effect of cannabinoids (CBs) in promoting glial differentiation and inhibiting gliomagenesis has been evidenced. Herein, we demonstrated that cannabidiol (CBD) by activating transient receptor potential vanilloid-2 (TRPV2) triggers GSCs differentiation activating the autophagic process and inhibits GSCs proliferation and clonogenic capability. Above all, CBD and carmustine (BCNU) in combination overcome the high resistance of GSCs to BCNU treatment, by inducing apoptotic cell death. Acute myeloid leukemia (Aml-1) transcription factors play a pivotal role in GBM proliferation and differentiation and it is known that Aml-1 control the expression of several nociceptive receptors. So, we evaluated the expression levels of Aml-1 spliced variants (Aml-1a, b and c) in GSCs and during their differentiation. We found that Aml-1a is upregulated during GSCs differentiation, and its downregulation restores a stem cell phenotype in differ- entiated GSCs. Since it was demonstrated that CBD induces also TRPV2 expression and that TRPV2 is involved in GSCs differ- entiation, we evaluated if Aml-1a interacted directly with TRPV2 promoters. Herein, we found that Aml-1a binds TRPV2 promoters and that Aml-1a expression is upregulated by CBD treatment, in a TRPV2 and PI3K/AKT dependent manner. Alto- gether, these results support a novel mechanism by which CBD inducing TRPV2-dependent autophagic process stimulates Aml-1a-dependent GSCs differentiation, abrogating the BCNU chemoresistance in GSCs

    The functional polymorphism rs73598374:G>A (p.Asp8Asn) of the ADA gene is associated with telomerase activity and leukocyte telomere length

    Get PDF
    Recent evidence demonstrated a relevant role of adenosine deaminase (ADA) in replicative senescence of T cells through its capacity to modulate telomerase activity (TA). Herein, we tested the impact of the functional polymorphism ADA rs73598374:G>A (c.22G>A, p.Asp8Asn) on telomere biology, by measuring TA and leukocyte telomere length (LTL) in healthy subjects selected according to rs73598374 genotype. rs73598374-A carriers showed lower TA (P=0.019) and shorter LTL (P=0.003), respectively, compared to G/G carriers. rs73598374-A carriers showed a stronger cross-sectional age reduction of LTL (r=-0.314, P=0.005) compared to G/G carriers (r=-0.243, P=0.022). The reduced ADA activity associated to rs73598374-A variant predisposes those carriers to display higher levels of adenosine compared to G/G carriers. Consequently, it may lead to an accelerated process of replicative senescence, causing a stronger reduction of TA and in turn shorter LTL. In conclusion, the crucial role played by replicative senescence of the immune system in several human diseases and in the aging process underscores the relevance of the present findings and also spurs interest into the possible involvement of rs73598374 in shaping the susceptibility to several age-related diseases

    Hypericum perforatum methanolic extract inhibits growth of human prostatic carcinoma cell line orthotopically implanted in nude mice.

    Get PDF
    The antiproliferative effect of serotonin-reuptake inhibitors (SSRI) and serotonin antagonists has been demonstrated in prostate tumors. Since Hypericum perforatum components act as serotonin-reuptake inhibitors and exert cytotoxic effects on several human cancer cell lines, in this work we analyzed the effect of a treatment with Hypericum perforatum extract (HPE) on the growth of human prostate cancer cells in vitro and in vivo. This study highlighted a significant reduction of tumor growth and number of metastasis suggesting that this natural compound may be useful in the treatment of prostate cancer

    Proopiomelanocortin gene expression in the ovary of the frog, Rana esculenta.

    Get PDF
    The presence of proopionmelanocortin (POMC)-like mRNA has been demonstrated in a variety of extrapituitary tissues including hypothalamus,1 placenta,2 ovary,2 and testis.3 In amphibians, the POMC gene is actively expressed in the pituitary, both in melanotrope cells of the pars intermedia and in corticotrope cells of the pars distalis. 4–6 POMC gene expression in peripheral organs has also been investigated in Rana esculenta,7 indicating that POMC is actually synthetized in the ovary. Previous studies have shown that POMC-derived peptides are involved in local control of ovarian function and display seasonal changes.8,9 The aim of the present work was to develop a competitive reverse transcriptase polymerase chain reaction (RT-PCR) method using a synthetic, deletion mutant of POMC cRNA as an internal standard in order to quantify the amount of POMC mRNA in the ovary of Rana esculenta

    Advances in transient receptor potential vanilloid-2 channel expression and function in tumor growth and progression.

    Get PDF
    Aim of this review is to study the role of the TRPV2 channel, a member of the TRPV subfamily of TRP channels, in tumor progression. Physiologically, the triggering of TRPV2 by agonists/activators (e.g., growth factors, hormones and cannabinoids), by inducing TRPV2 translocation from the endosome to the plasmatic membrane, inhibit cell proliferation and induce necrosis and/or apoptosis. Thus, loss or alterations of TRPV2 proliferative and apoptotic signals, results in uncontrolled proliferation and augmented resistance to apoptotic stimuli. For example in prostate cancer cells, the TRPV2 activation following lysophospholipid or adrenomedullin stimulation enhances the invasiveness of cancer cells; furthermore, the increased malignancy of castration-resistant prostate cancer cells was associated with enhanced TRPV2 expression, mainly in metastatic prostate cancer cells. In addition, the TRPV2 cellular functions may also to be related to the presence of TRPV2 variants, able to interfere with the physiological functions of normal TRPV2 channels. In this regard, bladder cancer tumors show loss or reduction of a short TRPV2 variant during cancer progression, with increased malignancy and invasiveness. High expression of TRPV2 was also observed more frequently in esophageal squamous cell carcinoma patients with advanced pT stage, lymph node metastasis and advanced pathological stage

    Cross-talk between microRNAs, long non-coding RNAs and p21Cip1 in glioma: diagnostic, prognostic and therapeutic roles

    Get PDF
    Glioblastoma multiforme is considered one of the most common malignant primary intracranial tumors. Despite treatment with a combination of surgery, chemotherapy and radiotherapy, patients with glioblastoma multiform have poor prognosis. It has been widely accepted that the occurrence, progression, and even recurrence of glioblastoma multiforme strictly depends on the presence of glioma cancer stem cells. The presence of glioma stem cells reduces the efficacy of standard therapies, thus increasing the imperative to identify new targets and therapeutic strategies in glioblastoma patients. In this regard, the p21Cip1 pathway has been found to play an important role in the maintenance of the glioma stem cells. It has been shown that this pathway regulates cancer stem cell pool by preventing hyperproliferation and exhaustion. MicroRNAs, endogenous small non-coding RNAs, and long non-coding RNAs, regulate post-transcription gene expression. These are not only altered in glioma, but also in other cancer types, and are involved in tumor development and progression. Notably, they have also been shown to modulate the expression of proteins in the p21Cip1 signaling pathway. This review highlights the extent and complexity of cross-talk between microRNAs, long non-coding RNAs and the p21Cip1 pathway, and demonstrates how such interplay orchestrates the regulation of protein expression and functions in glioma and glioma stem cells
    • …
    corecore