17 research outputs found

    Secondary bacterial infections of buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin

    Get PDF
    Buruli ulcer (BU), caused by Mycobacterium ulcerans is a chronic necrotizing skin disease. It usually starts with a subcutaneous nodule or plaque containing large clusters of extracellular acid-fast bacilli. Surrounding tissue is destroyed by the cytotoxic macrolide toxin mycolactone produced by microcolonies of M. ulcerans. Skin covering the destroyed subcutaneous fat and soft tissue may eventually break down leading to the formation of large ulcers that progress, if untreated, over months and years. Here we have analyzed the bacterial flora of BU lesions of three different groups of patients before, during and after daily treatment with streptomycin and rifampicin for eight weeks (SR8) and determined drug resistance of the bacteria isolated from the lesions. Before SR8 treatment, more than 60% of the examined BU lesions were infected with other bacteria, with Staphylococcus aureus and Pseudomonas aeruginosa being the most prominent ones. During treatment, 65% of all lesions were still infected, mainly with P. aeruginosa. After completion of SR8 treatment, still more than 75% of lesions clinically suspected to be infected were microbiologically confirmed as infected, mainly with P. aeruginosa or Proteus miriabilis. Drug susceptibility tests revealed especially for S. aureus a high frequency of resistance to the first line drugs used in Ghana. Our results show that secondary infection of BU lesions is common. This could lead to delayed healing and should therefore be further investigated

    Rapid Molecular Assays for Specific Detection and Quantitation of Loa loa Microfilaremia

    Get PDF
    Loa loa is a filarial nematode that infects over 10 million people in Africa. Most infections cause no symptoms, but individuals with large numbers of blood-stage microfilariae are at risk for fatal reactions to ivermectin, an antiparasitic agent used to treat and prevent infections with Onchocerca volvulus, a related filarial parasite that may occur alongside L. loa. To address the urgent need for a point-of-care L. loa diagnostic assay, we screened a Loa microfilaria gene expression library and identified 18 Loa-specific DNA targets. From two targets, we developed a novel, rapid quantitative PCR assay for estimating L. loa microfilaria burden. The assay is highly sensitive (detects a single microfilaria in 20 µL of blood) and correlates well with microfilaria counts obtained with conventional microscopic techniques. The assay is species-specific for L. loa compared with related filarial parasites (including O. volvulus) and can be used in its current form in resource-rich areas as a diagnostic tool for L. loa infection. Although modifications will be required to make point-of-care use feasible, our assay provides a proof of concept for a potentially valuable tool to identify individuals at risk for adverse reactions to ivermectin and to facilitate the implementation of filarial control programs

    Situation analysis of parasitological and entomological indices of onchocerciasis transmission in three drainage basins of the rain forest of South West Cameroon after a decade of ivermectin treatment

    Get PDF
    BACKGROUND: Community-Directed Treatment with Ivermectin (CDTI) is the main strategy adopted by the African Programme for Onchocerciasis control (APOC). Recent reports from onchocerciasis endemic areas of savannah zones have demonstrated the feasibility of disease elimination through CDTI. Such information is lacking in rain forest zones. In this study, we investigated the parasitological and entomological indices of onchocerciasis transmission in three drainage basins in the rain forest area of Cameroon [after over a decade of CDTI]. River basins differed in terms of river number and their flow rates; and were characterized by high pre-control prevalence rates (60-98%). METHODS: Nodule palpation and skin snipping were carried out in the study communities to determine the nodule rates, microfilarial prevalences and intensity. Simulium flies were caught at capture points and dissected to determine the biting, parous, infection and infective rates and the transmission potential. RESULTS: The highest mean microfilaria (mf) prevalence was recorded in the Meme (52.7%), followed by Mungo (41.0%) and Manyu drainage basin (33.0%). The same trend was seen with nodule prevalence between the drainage basins. Twenty-three (23/39) communities (among which 13 in the Meme) still had mf prevalence above 40%. All the communities surveyed had community microfilarial loads (CMFL) below 10 mf/skin snip (ss). The infection was more intense in the Mungo and Meme. The intensity of infection was still high in younger individuals and children less than 10 years of age. Transmission potentials as high as 1211.7 infective larvae/person/month were found in some of the study communities. Entomological indices followed the same trend as the parasitological indices in the three river basins with the Meme having the highest values. CONCLUSION: When compared with pre-control data, results of the present study show that after over a decade of CDTI, the burden of onchocerciasis has reduced. However, transmission is still going on in this study site where loiasis and onchocerciasis are co-endemic and where ecological factors strongly favour the onchocerciasis transmission. The possible reasons for this persistent and differential transmission despite over a decade of control efforts using ivermectin are discussed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0817-2) contains supplementary material, which is available to authorized users
    corecore