54 research outputs found

    Factors influencing citrus fruit scarring caused by Pezothrips kellyanus

    Full text link
    [EN] Kelly s citrus thrips (KCT) Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae) is a recently recorded cosmopolitan citrus pest, causing fruit scarring that results in downgrading of fruit. Due to the detrimental effects caused on fruits by KCT, we wanted to study some of the factors influencing fruit scarring. Specifically, the objectives were: (1) to determine the fruit development stage when citrus fruits are damaged by KCT and the population structure of KCT during this period, (2) to study the influence of temperature on intensity of damage, and finally, (3) to identify alternative host plants. KCT populations on flowers and fruitlets and alternate plant hosts were sampled in four citrus orchards from 2008 to 2010. The percentage of damaged fruits was also recorded. The exotic vine Araujia sericifera (Apocynaceae) was recorded as a new host for KCT. Thrips scarring started to increase at 350 650 degree-days (DD) above 10.2 C, coinciding with a peak abundance of the second instar larval stages over all 3 years of the study. The maximum percentage of larval stages of KCT was observed in the 3 years at about 500 DD, a period which corresponds to the end of May or early June. Variation in the severity of fruit scarring appeared to be related to air temperature. Temperature likely affects the synchronisation between the peak in abundance of KCT larvae, and the period when fruitlets are susceptible to thrips damage. Temperature can also influence the survival and development of KCT populations in citrus and other host plants in the citrus agro-ecosystem.The authors thank Alejandro Tena for his valuable suggestions and two anonymous referees for their careful review and helpful comments. We also extend our thanks to the owners of the commercial orchards for giving us permission to use their citrus orchards. The first author was awarded an FPI fellowship from the Polytechnic University of Valencia to obtain her PhD degree.Navarro Campos, C.; Pekas, A.; Aguilar Martí, MA.; Garcia Marí, F. (2013). Factors influencing citrus fruit scarring caused by Pezothrips kellyanus. Journal of Pest Science. (86):459-467. doi:10.1007/s10340-013-0489-7S45946786Baker GJ (2006) Kelly citrus thrips management. Fact sheet. Government of South Australia, primary industries and resources SA. http://www.sardi.sa.gov.au/__data/assets/pdf_file/0010/44875/kctfact_sheet.pdf . Accessed 16 July 2012Baker GJ, Jackman DJ, Keller M, MacGregor A, Purvis S (2002) Development of an integrated pest management system for thrips in Citrus. HAL Final Report CT97007. http://www.sardi.sa.gov.au/pestsdiseases/horticulture/horticultural_pests/kelly_citrus_thrips/research_report_1997-2000 . Accessed 16 July 2012Bedford ECG (1998) Thrips, wind and other blemishes. Citrus pests in the Republic of South Africa. In: Bedford ECG, van den Berg MA, de Villiers EA (eds) ARC-Institute for tropical and subtropical crops, Nelspruit, South Africa, pp 170–183Blank RH, Gill GSC (1997) Thrips (Thysanoptera: Terebrantia) on flowers and fruit of citrus in New Zealand. N Z J Crop Hortic Sci 25:319–332Chellemi D, Funderburk F, Hall D (1994) Seasonal abundance of flower-inhabiting Frankliniella species (Thysanoptera: Thripidae) on wild plant species. Environ Entomol 23:337–342Conti F, Tuminelli R, Amico C, Fisicaro R, Frittitta C, Perrotta G, Marullo R (2001) Monitoring Pezothrips kellyanus on citrus in eastern Sicily, Thrips and tospoviruses. In: Proceedings of the 7th international symposium on Thysanoptera, Reggio Calabria, 1–8 July 2001, Italy, pp 207–210Costa L, Mateus C, zurStrassen R, Franco JC (2006) Thrips (Thysanoptera) associated to lemon orchards in the Oeste region of Portugal. IOBC/WPRS Bull 29:285–291European Plant Protection Organisation Reporting Service [EPPO] (2006) Pezothrips kellyanus. http://www.eppo.org/QUARANTINE/Pest_Risk_Analysis/PRAdocs_insects/06-12760%20DS%20PEZTKE.doc. Accessed 18 June 2012European Plant ProtectionOrganisation Reporting Service [EPPO] (2005) Scirtothrips aurantii, Scirtothrips citri, Scirtothrips dorsalis. EPPO Bull 35:353–356Franco JC, Garcia-Marí F, Ramos AP, Besri M (2006) Survey on the situation of citrus pest management in Mediterranean countries. IOBC/WPRS Bull 29:335–346Froud KJ, Stevens PS, Steven D (2001) Survey of alternative host plants for Kelly’s citrus thrips (Pezothrips kellyanus) in citrus growing regions. N Z Plant Prot 54:15–20Gomez-Clemente F (1952) Un tisanóptero causante de daños en las naranjas de algunas zonas de Levante. Boletín de Patología Vegetal y Entomología Agrícola 19:135–146Grout TG, Morse JG, O’Connell NV, Flaherty DL, Goodell PB, Freeman MW, Coviello RL (1986) Citrus thrips (Thysanoptera: Thripidae) phenology and sampling in the San Joaquin Valley. J Econ Entomol 79:1516–1523Horton J (1918) The citrus thrips. US Dep Agric Bull 616:1–42Kirk WDJ (1987) A key to the larvae of some common Australian flower thrips (Insecta: Thysanoptera), with a host-plant survey. Aust J Zool 35:173–185Lacasa A, Llorens JM, Sánchez JA (1996) Un Scirtothrips (Thysanoptera: Thripidae) causa daños en los cítricos en España. Bol San Veg Plagas 22:79–95Lewis HC (1935) Factors influencing citrus thrips damage. J Econ Entomol 28:1011–1015Lewis T (1997) Distribution, abundance and population dynamics. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 217–258Lovatt C, Streeter S, Minter T, O’connell N, Flaherty D, Freeman M, Goodell P (1984) Phenology of flowering in Citrus sinensis (L.) Osbeck, cv. Washington navel orange. Proc Int Soc Citric 1:186–190Marullo R (1998) Pezothrips kellyanus, un nuovo tripide parassita delle colture meridionali. Informatore Fitopatologico 48:72–75Milne JR, Milne M, Walter GH (1997) A key to larval thrips (Thysanoptera) from Granite Belt stonefruit trees and a first description of Pseudanaphothrips achaetus (Bagnall) larvae. Aust J Entomol 36:319–326Mound LA, Jackman DJ (1998) Thrips in the economy and ecology of Australia, In: Zalucki MP, RAI Drew RAI, White GG (eds) Pest Management: future challenges, Proceedings of the sixth Australian applied entomological research conference, University of Queensland, St. Lucia, pp 472–478Mound LA, Marullo R (1996) The thrips of Central and South America (Insecta: Thysanoptera): an introduction. Mem Entomol Int 6:1–487Mound LA, Walker AK (1982) Terebrantia (Insecta: Thysanoptera). Fauna N Z 1:1–113Navarro-Campos C, Marzal C, Aguilar A, GarciaMarí F (2010) Presencia del microlepidóptero Anatrachyntisbadia en cítricos: descripción, comportamiento y daños al fruto. Levante Agrícola 402:270–276Navarro-Campos C, Aguilar A, Garcia-Marí F (2011) Population trend and fruit damage of Pezothrips kellyanus in citrus orchards in Valencia (Spain). IOBC/WPRS Bull 62: 285–292Navarro-Campos C, Aguilar A, Garcia-Marí F (2012) Aggregation pattern, sampling plan and intervention threshold for Pezothrips kellyanus in citrus groves. Entomol Exp Appl 142:130–139Northfield TD, Paini DR, Funderburk JE, Reitz SR (2008) Annual cycles of Frankliniella spp. (Thysanoptera: Thripidae) thrips abundance on North Florida uncultivated reproductive hosts: predicting possible sources of pest outbreaks. Ann Entomol Soc Am 101:769–778Orphanides G (1997) Thrips on citrus. Annual Review for 1997. Agricultural Research Institute, Nicosia, CyprusPerrotta G, Conti F (2008) A threshold hypothesis for an integrated control of thrips infestation on citrus in South-Eastern Sicily. IOBC/WPRS Bull 38:204–209Reitz S, Yu-lin G, Zhong-ren L (2011) Thrips: pests of concern to China and the United States. Agric Sci China 10:867–892Rhodes AA, Morse JG (1989) Scirtothrips citri sampling and damage prediction on California navel oranges. Agric Ecosyst Environ 26:117–129Schellhorn NA, Glatz RV, Wood GM (2010) The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae). Bull Entomol Res 100:501–510Schweizer H, Morse JG (1997) Estimating the level of fruit scarring by citrus thrips from temperature conditions prior to the end of bloom. Crop Prot 16:743–752Smith D, Beattie GAC, Broadley R (eds) (1997) Citrus pests and their natural enemies: integrated pest management in Australia. Information series Q197030. Queensland Department of Primary Industries, BrisbaneStatgraphics (1994) Version 5.1 Plus. Statistical Graphics System by Statistical Graphics Corporation. Manugistics, RockvilleTanigoshi LK, Nishio JY, Moreno DS, Fargerlund J (1980) Effect of temperature on development and survival of Scirtothrips citri on citrus foliage. Ann Entomol Soc Am 73: 378–338Teksam I, Tunç I (2009) An analysis of Thysanoptera associated with citrus flowers in Antalya, Turkey: composition, distribution, abundance and pest status of species. Appl Entomol Zool 44:455–464Varikou K, Tsitsipis JA, Alexandrakis V, Mound LA (2002) Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae), a new pest of citrus trees in Crete, In: Proceedings of the VII European congress of entomology, Thessaloniki, Greece, 7–13 Oct 2002, p 33Varikou K, Tsitsipis I, Alexandrakis V, Hoddle M (2009) Effect of temperature on the development and longevity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 102:835–841Varikou K, Birouraki A, Tsitsipis I, Sergentani CHR (2012) Effect of temperature on the fecundity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 105:60–65Vassiliou VA (2007) Chemical control of Pezothrips kellyanus (Thysanoptera: Thripidae) in citrus plantations in Cyprus. Crop Prot 26:1579–1584Vassiliou VA (2010) Ecology and behavior of Pezothrips kellyanus (Thysanoptera: Thripidae) on Citrus. J Econ Entomol 103:47–53Vierbergen G, Kucharczyk H, Kirk WDJ (2010) A key to the second instar larvae of the Thripidae of the Western Palearctic region. Tijdschr Entomol 153:99–160Webster KW, Cooper P, Mound LA (2006) Studies on Kelly’s citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae): sex attractants, host associations and country of origin. Aust J Entomol 45:67–74Wiesenborn W, Morse JG (1986) Feeding rate of Scirtothripscitri (Moulton) (Thysanoptera: Thripidae) as influenced by life stage and temperature. Environ Entomol 15:763–76

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF
    As global biodiversity declines, biodiversity and conservation have become ever more important research topics. Research in chemical ecology for conservation purposes has not adapted to address this need. During the last 10-15 years, only a few insect pheromones have been developed for biodiversity and conservation studies, including the identification and application of pheromones specifically for population monitoring. These investigations, supplemented with our knowledge from decades of studying pest insects, demonstrate that monitoring with pheromones and other semiochemicals can be applied widely for conservation of rare and threatened insects. Here, I summarize ongoing conservation research, and outline potential applications of chemical ecology and pheromone-based monitoring to studies of insect biodiversity and conservation research. Such applications include monitoring of insect population dynamics and distribution changes, including delineation of current ranges, the tracking of range expansions and contractions, and determination of their underlying causes. Sensitive and selective monitoring systems can further elucidate the importance of insect dispersal and landscape movements for conservation. Pheromone-based monitoring of indicator species will also be useful in identifying biodiversity hotspots, and in characterizing general changes in biodiversity in response to landscape, climatic, or other environmental changes

    Pheromones and Other Semiochemicals for Monitoring Rare and Endangered Species

    Get PDF

    SMT-based automatic proof of ASM model refinement

    No full text
    Model refinement is a technique indispensable for modeling large and complex systems. Many formal specification methods share this concept which usually comes together with the definition of refinement correctness, i.e., the mathematical proof of a logical relation between an abstract model and its refined models. Model refinement is one of the main concepts which the Abstract State Machine (ASM) formal method is built on. Proofs of correct model refinement are usually performed manually, which reduces the usability of the ASM model refinement approach. An automatic support to assist the developer in proving refinement correctness along the chain of refinement steps could be of extreme importance to improve, in practice, the adoption of ASMs. In this paper, we present how the integration between the ASMs and Satisfiability Modulo Theories (SMT) can be used to automatically prove correctness of model refinement for the ASM method

    Is post-stroke cognitive impairment all about real estate?

    No full text

    On the Selection of Financing Instruments to Push the Development of New Technologies: Application to clean energy technologies

    Get PDF
    This article is based on THINK Report Topic 1 http://hdl.handle.net/1814/20754Achieving climate policy goals requires mobilizing public funds to bring still immature clean technologies to competitiveness and create new technological options. The format of direct public support must be tailored to the characteristics of technologies addressed. Based on the experience accumulated with innovation programs, we have identified those features of innovation that should directly condition the choice of direct support instruments. These include the funding gap between the cost of innovation activities and the amount of private funds leveraged; the ability of technologies targeted to compete for public funds in the market; the probability that these technologies fail to reach the market; and the type of entity best suited to conduct these activities. Clean innovation features are matched to those of direct support instruments to provide recommendations on the use to be made of each type of instrument. Given the large financing gap of most clean energy innovation projects, public grants and contracts should finance a large part of clean pre-deployment innovation. However, public loans, equity investments, prizes and tax credits or rebates can successfully support certain innovation processes at a lower public cost. Principles derived are applied to identify the instrument best suited to a case example
    corecore