413 research outputs found

    Occurrence and bioconcentration of micropollutants in Silver Perch (Bidyanus bidyanus) in a reclaimed water reservoir

    Get PDF
    © 2018 This study examined the occurrence of 49 micropollutants in reclaimed water and Silver Perch (Bidyanus bidyanus) living in a reclaimed water reservoir. The numbers of micropollutants detected in reclaimed water, Silver Perch liver, and Silver Perch flesh were 20, 23, and 19, respectively. Concentrations of all micropollutants in reclaimed water, except benzotriazole, were well below the Australian Guideline for Recycled Water (AGRW) values for potable purposes. The concentration of benzotriazole in reclaimed water was 675 ± 130 ng/L while the AGRW value for this compound was 7 ng/L. Not all micropollutants detected in the water phase were identified in the Silver Perch flesh and liver tissues. Likewise, not all micropollutants detected in the Silver Perch flesh and liver were identified in the reclaimed water. In general, micropollutant concentrations in the liver were higher than in the flesh. Perfluorooctane sulfonate (PFOS) was detected at a trace level in reclaimed water well below the AGRW guideline value for potable purposes, but showed a high and medium bioconcentration factor in Silver Perch liver and flesh, respectively. In addition, the risk quotient for PFOS was medium and high when considering its concentration in Silver Perch liver and flesh, respectively. Results reported here highlight the need to evaluate multiple parameters for a comprehensive risk assessment. The results also single out PFOS as a notable contaminant of concern for further investigation

    Modelling ranging behaviour of female orang-utans: a case study in Tuanan, Central Kalimantan, Indonesia

    Full text link
    Quantification of the spatial needs of individuals and populations is vitally important for management and conservation. Geographic information systems (GIS) have recently become important analytical tools in wildlife biology, improving our ability to understand animal movement patterns, especially when very large data sets are collected. This study aims at combining the field of GIS with primatology to model and analyse space-use patterns of wild orang-utans. Home ranges of female orang-utans in the Tuanan Mawas forest reserve in Central Kalimantan, Indonesia were modelled with kernel density estimation methods. Kernel results were compared with minimum convex polygon estimates, and were found to perform better, because they were less sensitive to sample size and produced more reliable estimates. Furthermore, daily travel paths were calculated from 970 complete follow days. Annual ranges for the resident females were approximately 200 ha and remained stable over several years; total home range size was estimated to be 275 ha. On average, each female shared a third of her home range with each neighbouring female. Orang-utan females in Tuanan built their night nest on average 414 m away from the morning nest, whereas average daily travel path length was 777 m. A significant effect of fruit availability on day path length was found. Sexually active females covered longer distances per day and may also temporarily expand their ranges

    Multitrait analysis of quantitative trait loci using Bayesian composite space approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multitrait analysis of quantitative trait loci can capture the maximum information of experiment. The maximum-likelihood approach and the least-square approach have been developed to jointly analyze multiple traits, but it is difficult for them to include multiple QTL simultaneously into one model.</p> <p>Results</p> <p>In this article, we have successfully extended Bayesian composite space approach, which is an efficient model selection method that can easily handle multiple QTL, to multitrait mapping of QTL. There are many statistical innovations of the proposed method compared with Bayesian single trait analysis. The first is that the parameters for all traits are updated jointly by vector or matrix; secondly, for QTL in the same interval that control different traits, the correlation between QTL genotypes is taken into account; thirdly, the information about the relationship of residual error between the traits is also made good use of. The superiority of the new method over separate analysis was demonstrated by both simulated and real data. The computing program was written in FORTRAN and it can be available for request.</p> <p>Conclusion</p> <p>The results suggest that the developed new method is more powerful than separate analysis.</p

    FIB-SEM imaging of carbon nanotubes in mouse lung tissue

    Get PDF
    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-013-7566-x) contains supplementary material, which is available to authorized users

    Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum x Lophopyrum elongatum disomic substitution lines.

    Get PDF
    Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred towheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring 9 Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the substitution lines were susceptible to Mayetiola destructor and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs

    High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    Get PDF
    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination

    An enigmatic hypoplastic defect of the maxillary lateral incisor in recent and fossil orangutans from Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus)

    Get PDF
    Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes
    corecore