8 research outputs found

    Vortices in polariton OPO superfluids

    Get PDF
    This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quantised vortices. However, metastable vortices can only be injected externally into an otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the currents charactering an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices.Comment: 40 pages, 16 figure

    Observation of bright polariton solitons in a semiconductor microcavity

    Get PDF
    Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time

    Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

    No full text
    Abstract We report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition from wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. We study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure
    corecore