365 research outputs found

    An adenovirus-derived protein: A novel candidate for anti-diabetic drug development

    Get PDF
    © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). Aims Exposure to human adenovirus Ad36 is causatively and correlatively linked with better glycemic control in animals and humans, respectively. Although the anti-hyperglycemic property of Ad36 may offer some therapeutic potential, it is impractical to use an infectious agent for therapeutic benefit. Cell-based studies identified that Ad36 enhances cellular glucose disposal via its E4orf1 protein. Ability to improve glycemic control in vivo is a critical prerequisite for further investigating the therapeutic potential of E4orf1. Therefore, the aim of this study was to determine the ability of E4orf1 to improve glycemic control independent of insulin despite high fat diet. Materials & Methods 8-9wk old male C57BL/6J mice fed a high-fat diet (60% kcal) were injected with a retrovirus plasmid expressing E4orf1, or a null vector (Control). Glycemic control was determined by glucose and insulin tolerance test. Islet cell size, amount of insulin and glucagon were determined in formalin-fixed pancreas. Rat insulinoma cell line (832/13) was infected with E4orf1 or control to determine changes in glucose stimulated insulin secretion. Protein from flash frozen adipose tissue depots, liver and muscle was used to determine molecular signaling by western blotting. Results In multiple experiments, retrovirus-mediated E4orf1 expression in C57BL/6J mice significantly and reproducibly improved glucose excursion following a glucose load despite a high fat diet (60% energy). Importantly, E4orf1 improved glucose clearance without increasing insulin sensitivity, production or secretion, underscoring its insulin-independent effect. E4orf1 modulated molecular signaling in mice tissue, which included greater protein abundance of adiponectin, p-AKT and Glucose transporter Glu4. Conclusions This study provides the proof of concept for translational development of E4orf1 as a potential anti-diabetic agent. High fat intake and impaired insulin signaling are often associated with obesity, diabetes and insulin resistance. Hence, the ability of E4orf1 to improve glycemic control despite high fat diet and independent of insulin, is particularly attractive

    Monitoring the kinetics of the pH driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance

    Get PDF
    Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å beta barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor (EF), from the endosome into the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance (SPR) and bio-layer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from pH 7.5 to pH 5.0, mirroring acidification of the endosome. Once transitioned, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto EM grids, where the PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early or late endosomal pH conditions (5.5 to 5.0 respectively). Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions

    American Academy of Optometry Microbial Keratitis Think Tank

    Full text link
    SIGNIFICANCE Think Tank 2019 affirmed that the rate of infection associated with contact lenses has not changed in several decades. Also, there is a trend toward more serious infections associated with Acanthamoeba and fungi. The growing use of contact lenses in children demands our attention with surveillance and case-control studies. PURPOSE The American Academy of Optometry (AAO) gathered researchers and key opinion leaders from around the world to discuss contact lens-associated microbial keratitis at the 2019 AAO Annual Meeting. METHODS Experts presented within four sessions. Session 1 covered the epidemiology of microbial keratitis, pathogenesis of Pseudomonas aeruginosa, and the role of lens care systems and storage cases in corneal disease. Session 2 covered nonbacterial forms of keratitis in contact lens wearers. Session 3 covered future needs, challenges, and research questions in relation to microbial keratitis in youth and myopia control, microbiome, antimicrobial surfaces, and genetic susceptibility. Session 4 covered compliance and communication imperatives. RESULTS The absolute rate of microbial keratitis has remained very consistent for three decades despite new technologies, and extended wear significantly increases the risk. Improved oxygen delivery afforded by silicone hydrogel lenses has not impacted the rates, and although the introduction of daily disposable lenses has minimized the risk of severe disease, there is no consistent evidence that they have altered the overall rate of microbial keratitis. Overnight orthokeratology lenses may increase the risk of microbial keratitis, especially secondary to Acanthamoeba, in children. Compliance remains a concern and a significant risk factor for disease. New insights into host microbiome and genetic susceptibility may uncover new theories. More studies such as case-control designs suited for rare diseases and registries are needed. CONCLUSIONS The first annual AAO Think Tank acknowledged that the risk of microbial keratitis has not decreased over decades, despite innovation. Important questions and research directions remain

    Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh

    Get PDF
    This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events

    Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals In Vivo

    Get PDF
    Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.National Institutes of Health (U.S.) (Program Project Grant P01-CA026731)National Institutes of Health (U.S.) (R33-CA112151)National Institute of Environmental Health Sciences (P30-ES002109)Singapore-MIT Alliance for Research and Technology CenterNational Institutes of Health (U.S.) (P41-EB015871)National Cancer Institute (U.S.) (P30-CA014051

    2:1 Multiplexing Function in a Simple Molecular System

    Get PDF
    1-[(Anthracen-9-yl)methylene] thiosemicarbazide shows weak fluorescence due to a photo-induced electron transfer (PET) process from the thiosemicarbazide moiety to the excited anthracene. The anthracene emission can be recovered via protonation of the amine as the protonated aminomethylene as an electron-withdrawing group that suppresses the PET process. Similarly, chelation between the ligand and the metal ions can also suppress the PET process and results in a fluorescence enhancement (CHEF). When solvents are introduced as the third control, a molecular 2:1 multiplexer is constructed to report selectively the inputs. Therefore, a molecular 2:1 multiplexer is realized in a simple molecular system

    Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID)

    Get PDF
    Introduction The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). Methods and analysis The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. Ethics and dissemination All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. Conclusion This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD

    Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution

    Get PDF
    This study investigates the diurnal variation of the warm season precipitation simulated by the Goddard Earth Observing System version 5 atmospheric general circulation model for 2??years (2005???2006) at a horizontal resolution of 10??km. The simulation was validated with the satellite-derived Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data and the Modern-Era Retrospective analysis for Research and Applications atmospheric reanalysis for atmospheric winds and moisture. The simulation is compared with the coarse-resolution run in 50??km to examine the impacts driven by resolution change. Overall, the 10??km model tends to reproduce the important features of the observed diurnal variation, such as the amplitude and phase at which precipitation peaks in the evening on land and in the morning over the ocean, despite an excessive amplitude bias over land. The model also reproduces the realistic propagation patterns of precipitation in the vicinity of ocean coasts and major mountains. The regional characteristics of the diurnal precipitation over two regions, the Bay of Bengal and the Great Plains in North America, are examined in detail, where the observed diurnal cycle exhibits a systematic transition in the peak phase due to the development and propagation of regional-scale convective systems. The model is able to reproduce this pattern as well as the diurnal variation of low-level wind and moisture convergence; however, it is less effective at representing the nocturnal peak of precipitation over the Great Plains. The model results suggest that increasing the horizontal resolution of the model to 10??km substantially improves the representation of the diurnal precipitation cycle. However, intrinsic model deficiencies in topographical precipitation and the accurate representation of mesoscale convective systems remain a challenge
    corecore