20 research outputs found

    Familial adenomatous polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is characterized by the development of many tens to thousands of adenomas in the rectum and colon during the second decade of life. FAP has an incidence at birth of about 1/8,300, it manifests equally in both sexes, and accounts for less than 1% of colorectal cancer (CRC) cases. In the European Union, prevalence has been estimated at 1/11,300-37,600. Most patients are asymptomatic for years until the adenomas are large and numerous, and cause rectal bleeding or even anemia, or cancer develops. Generally, cancers start to develop a decade after the appearance of the polyps. Nonspecific symptoms may include constipation or diarrhea, abdominal pain, palpable abdominal masses and weight loss. FAP may present with some extraintestinal manifestations such as osteomas, dental abnormalities (unerupted teeth, congenital absence of one or more teeth, supernumerary teeth, dentigerous cysts and odontomas), congenital hypertrophy of the retinal pigment epithelium (CHRPE), desmoid tumors, and extracolonic cancers (thyroid, liver, bile ducts and central nervous system). A less aggressive variant of FAP, attenuated FAP (AFAP), is characterized by fewer colorectal adenomatous polyps (usually 10 to 100), later age of adenoma appearance and a lower cancer risk. Some lesions (skull and mandible osteomas, dental abnormalities, and fibromas on the scalp, shoulders, arms and back) are indicative of the Gardner variant of FAP. Classic FAP is inherited in an autosomal dominant manner and results from a germline mutation in the adenomatous polyposis (APC) gene. Most patients (~70%) have a family history of colorectal polyps and cancer. In a subset of individuals, a MUTYH mutation causes a recessively inherited polyposis condition, MUTYH-associated polyposis (MAP), which is characterized by a slightly increased risk of developing CRC and polyps/adenomas in both the upper and lower gastrointestinal tract. Diagnosis is based on a suggestive family history, clinical findings, and large bowel endoscopy or full colonoscopy. Whenever possible, the clinical diagnosis should be confirmed by genetic testing. When the APC mutation in the family has been identified, genetic testing of all first-degree relatives should be performed. Presymptomatic and prenatal (amniocentesis and chorionic villous sampling), and even preimplantation genetic testing is possible. Referral to a geneticist or genetic counselor is mandatory. Differential diagnoses include other disorders causing multiple polyps (such as Peutz-Jeghers syndrome, familial juvenile polyps or hyperplastic polyposis, hereditary mixed polyposis syndromes, and Lynch syndrome). Cancer prevention and maintaining a good quality of life are the main goals of management and regular and systematic follow-up and supportive care should be offered to all patients. By the late teens or early twenties, colorectal cancer prophylactic surgery is advocated. The recommended alternatives are total proctocolectomy and ileoanal pouch or ileorectal anastomosis for AFAP. Duodenal cancer and desmoids are the two main causes of mortality after total colectomy, they need to be identified early and treated. Upper endoscopy is necessary for surveillance to reduce the risk of ampullary and duodenal cancer. Patients with progressive tumors and unresectable disease may respond or stabilize with a combination of cytotoxic chemotherapy and surgery (when possible to perform). Adjunctive therapy with celecoxib has been approved by the US Food and Drug Administration and the European Medicines Agency in patients with FAP. Individuals with FAP carry a 100% risk of CRC; however, this risk is reduced significantly when patients enter a screening-treatment program

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity

    Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified many genetic susceptibility loci for colorectal cancer (CRC). However, variants in these loci explain only a small proportion of familial aggregation, and there are likely additional variants that are associated with CRC susceptibility. Genome-wide studies of gene-environment interactions may identify variants that are not detected in GWAS of marginal gene effects. To study this, we conducted a genome-wide analysis for interaction between genetic variants and alcohol consumption and cigarette smoking using data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Interactions were tested using logistic regression. We identified interaction between CRC risk and alcohol consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10−8; permuted pvalue 3.51x10-8) region. Compared to non-/occasional drinking light to moderate alcohol consumption was associated with a lower risk of colorectal cancer among individuals with rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74±0.91]; P = 2.1×10−4) and TT genotypes (OR,0.62 [95% CI, 0.51±0.75]; P = 1.3×10−6) but not associated among those with the CC genotype (p = 0.059). No genome-wide statistically significant interactions were observed for smoking. If replicated our suggestive finding of a genome-wide significant interaction between genetic variants and alcohol consumption might contribute to understanding colorectal cancer etiology and identifying subpopulations with differential susceptibility to the effect of alcohol on CRC risk

    Genetic variation in ST6GAL1 is a determinant of capecitabine and oxaliplatin induced hand-foot syndrome.

    No full text
    Cancer patients treated with capecitabine and oxaliplatin (XELOX) often develop hand-foot syndrome (HFS) or palmar-plantar erythrodysesthesia. Genetic variation in ST6GAL1 is a risk factor for type-2 diabetes (T2D), a disease also associated with HFS. We analysed genome-wide association data for 10 toxicities in advanced colorectal cancer (CRC) patients from the COIN and COIN-B trials. One thousand and fifty-five patients were treated with XELOX ± cetuximab and 745 with folinic acid, fluorouracil and oxaliplatin ± cetuximab. We also analysed rs6783836 in ST6GAL1 with HFS in CRC patients from QUASAR2. Using UK Biobank data, we sought to confirm an association between ST6GAL1 and T2D (17 384 cases, 317 887 controls) and analysed rs6783836 against markers of diabetes, inflammation and psoriasis. We found that 68% of patients from COIN and COIN-B with grade 2-3 HFS responded to treatment as compared to 58% with grade 0-1 HFS (odds ratio [OR] = 1.1, 95% confidence interval [CI] = 1.02-1.2, P = 2.0 × 10-4 ). HFS was also associated with improved overall survival (hazard ratio = 0.92, 95% CI = 0.84-0.99, P = 4.6 × 10-2 ). rs6783836 at ST6GAL1 was associated with HFS in patients treated with XELOX (OR = 3.1, 95% CI = 2.1-4.6, P = 4.3 × 10-8 ) and was borderline significant in patients receiving capecitabine from QUASAR2, but with an opposite allele effect (OR = 0.66, 95% CI = 0.42-1.03, P = .05). ST6GAL1 was associated with T2D (lead SNP rs3887925, OR = 0.94, 95% CI = 0.92-0.96, P = 1.2 × 10-8 ) and the rs6783836-T allele was associated with lowered HbA1c levels (P = 5.9 × 10-3 ) and lymphocyte count (P = 2.7 × 10-3 ), and psoriasis (P = 7.5 × 10-3 ) beyond thresholds for multiple testing. In conclusion, HFS is a biomarker of treatment outcome and rs6783836 in ST6GAL1 is a potential biomarker for HFS with links to T2D and inflammation

    Modeling the prevention of colorectal cancer from the combined impact of host and behavioral risk factors.

    No full text
    Purpose This study investigated the utility of modeling modifiable lifestyle risk factors in addition to genetic variation in colorectal cancer (CRC) screening/prevention.Methods We derived a polygenic risk score for CRC susceptibility variants in combination with the established nongenetic risk factors of inflammatory bowel disease (IBD), adiposity, alcohol, red meat, fruit, vegetables, smoking, physical activity, and aspirin. We used the 37 known risk variants and 50 and 100% of all risk variants as calculated from a heritability estimate. We derived absolute risk from UK population age structure, incidence, and mortality rate data.Results Taking into account all risk factors (known variants), 42.2% of 55- to 59-year-old men with CRC have a risk at least as high as that of an average 60-year-old, the minimum eligible age for the UK NHS National Bowel Cancer Screening Program. If the male population is stratified by known variants and IBD status, then risk-difference estimates imply that for 10,000 50-year-old men in the 99th percentile, 760 cases could be prevented over a 25-year period through the modifiable risk factors, but in the lowest percentile, only 90 could be prevented.Conclusion CRC screening and prevention centered on modifiable risk factors could be optimized if targeted at individuals at higher polygenic risk.Genet Med 19 3, 314-321

    Pattern Recognition Receptor Polymorphisms as Predictors of Oxaliplatin Benefit in Colorectal Cancer.

    No full text
    BACKGROUND: Constitutional loss of function (LOF) single nucleotide polymorphisms (SNPs) in pattern recognition receptors FPR1, TLR3, and TLR4 have previously been reported to predict oxaliplatin benefit in colorectal cancer. Confirmation of this association could substantially improve patient stratification. METHODS: We performed a retrospective biomarker analysis of the Short Course in Oncology Therapy (SCOT) and COIN/COIN-B trials. Participant status for LOF variants in FPR1 (rs867228), TLR3 (rs3775291), and TLR4 (rs4986790/rs4986791) was determined by genotyping array or genotype imputation. Associations between LOF variants and disease-free survival (DFS) and overall survival (OS) were analyzed by Cox regression, adjusted for confounders, using additive, dominant, and recessive genetic models. All statistical tests were two-sided. RESULTS: Our validation study populations included 2929 and 1948 patients in the SCOT and COIN/COIN-B cohorts, respectively, of whom 2728 and 1672 patients had functional status of all three SNPs determined. We found no evidence of an association between any SNP and DFS in the SCOT cohort, or with OS in either cohort, irrespective of the type of model used. This included models for which an association was previously reported for rs867228 (recessive model, multivariable-adjusted hazard ratio [HR] for DFS in SCOT = 1.19, 95% confidence interval [CI] = 0.99 to 1.45, P = .07; HR for OS in COIN/COIN-B = 0.92, 95% CI = 0.63 to 1.34, P = .66), and rs4986790 (dominant model, multivariable-adjusted HR for DFS in SCOT = 0.86, 95% CI = 0.65 to 1.13, P = .27; HR for OS in COIN/COIN-B = 1.08, 95% CI = 0.90 to 1.31, P = .40). CONCLUSION: In this prespecified analysis of two large clinical trials, we found no evidence that constitutional LOF SNPs in FPR1, TLR3, or TLR4 are associated with differential benefit from oxaliplatin. Our results suggest these SNPs are unlikely to be clinically useful biomarkers
    corecore