3 research outputs found
Primary decomposition and the fractal nature of knot concordance
For each sequence of polynomials, P=(p_1(t),p_2(t),...), we define a
characteristic series of groups, called the derived series localized at P.
Given a knot K in S^3, such a sequence of polynomials arises naturally as the
orders of certain submodules of the sequence of higher-order Alexander modules
of K. These group series yield new filtrations of the knot concordance group
that refine the (n)-solvable filtration of Cochran-Orr-Teichner. We show that
the quotients of successive terms of these refined filtrations have infinite
rank. These results also suggest higher-order analogues of the p(t)-primary
decomposition of the algebraic concordance group. We use these techniques to
give evidence that the set of smooth concordance classes of knots is a fractal
set. We also show that no Cochran-Orr-Teichner knot is concordant to any
Cochran-Harvey-Leidy knot.Comment: 60 pages, added 4 pages to introduction, minor corrections otherwise;
Math. Annalen 201