16 research outputs found

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique-Subtype and Stage Inference (SuStaIn)-able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10-4) or temporal stage (p = 3.96 × 10-5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Large-scale discovery of novel genetic causes of developmental disorders

    Get PDF
    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders1, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach2 to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing3,4,5,6,7,8,9,10,11 and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    High Dimensional Radial Barrier Options

    No full text
    Pricing high dimensional American options is a difficult problem in mathematical finance. Many simulation methods have been proposed, but Monte Carlo is numerically intensive, and therefore slow. We derive an analytic expression for a new type of multi-asset barrier option using Laplace transform methods. The solution is assumed to be radially symmetric in the normalized non dimensional variables, hence the name `Radial Barrier Options'. In the single-asset case our results reduce to published results for American binary barrier options.

    An Asymptotic Analysis of an American Call Option with Small Volatility

    No full text
    In this paper we present an asymptotic analysis of an American call option where the diffusion term (volatility) is small compared to the drift terms (interest rate and continuous dividend yield). We show that in the limit where diffusion is negligible, relative to drift, then, at leading order, the American call’s behaviour is the same as a perpetual American call option (except in a boundary layer about the option’s expiry date).

    Diagnostic Interpretation of Array Data Using Public Databases and Internet Sources

    No full text
    The range of commercially available array platforms and analysis software packages is expanding and their utility is improving, making reliable detection of copy-number variants (CNVs) relatively straightforward. Reliable interpretation of CNV data, however, is often difficult and requires expertise. With our knowledge of the human genome growing rapidly, applications for array testing continuously broadening, and the resolution of CNV detection increasing, this leads to great complexity in interpreting what can be daunting data. Correct CNV interpretation and optimal use of the genotype information provided by single-nucleotide polymorphism probes on an array depends largely on knowledge present in various resources. In addition to the availability of host laboratories' own datasets and national registries, there are several public databases and Internet resources with genotype and phenotype information that can be used for array data interpretation. With so many resources now available, it is important to know which are fit-for-purpose in a diagnostic setting. We summarize the characteristics of the most commonly used Internet databases and resources, and propose a general data interpretation strategy that can be used for comparative hybridization, comparative intensity, and genotype-based array data. Hum Mutat 33: 930-940, 2012. (C) 2012 Wiley Periodicals, Inc
    corecore