12 research outputs found

    Adaptive function of soil consumption: An in vitro study modeling the human stomach and small intestine

    No full text
    Despite occurring in a wide variety of taxa, deliberate soil consumption (geophagy) is a poorly understood behavior. In humans, geophagy is sometimes considered aberrant or a sign of metabolic dysfunction. However, geophagy is normally assigned an adaptive function in nonhuman primates and various other organisms. One hypothesis submits that clay-rich soil adsorbs intestinal insults, namely plant metabolites or diarrhoea-causing enterotoxins. Here we test the capacity of kaolin, a commonly ingested clay, to adsorb quinine (an alkaloid) and two types of tannin (digestion-inhibitors). Trials were conducted in vitro using the TNO Intestinal Model, a device that closely simulates digestion by the human stomach and small intestine. Kaolin reduced the bioavailability of each compound by ≤30%. However, because we could not replicate clay-epithelial adhesion and reduced motility, these results may underestimate adsorption in vivo. We also show that kaolin fails to render calcium oxalate soluble. We conclude that gastrointestinal adsorption is the most plausible function of human geophagy. Adaptive advantages include greater exploitation of marginal plant foods and reduced energetic costs of diarrhoea, factors that could account for the high frequency of geophagy in children and pregnant women across the tropics

    Global patterns of leaf mechanical properties

    No full text
    Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the glob

    Global patterns of leaf mechanical properties.

    Get PDF
    Leaf mechanical properties strongly influence leaf lifespan, plant–herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500–800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant–animal interactions and ecosystem functions across the globe.12 page(s

    Moonlight and Behavior in Nocturnal and Cathemeral Primates, Especially Lepilemur leucopus: Illuminating Possible Anti-Predator Efforts

    No full text
    corecore